<p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"></p>
<output id="3zz5p"></output><video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<p id="3zz5p"></p>
<p id="3zz5p"></p>

<output id="3zz5p"></output>
<video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

<video id="3zz5p"><p id="3zz5p"></p></video>

<video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

<noframes id="3zz5p"><p id="3zz5p"></p>
<p id="3zz5p"></p>

<p id="3zz5p"></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"><delect id="3zz5p"></delect></p>

<video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
<p id="3zz5p"></p>

<delect id="3zz5p"></delect>

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

小興安嶺林火動態研究

田曉瑞 宗學政 王志成 劉嘉雷

田曉瑞, 宗學政, 王志成, 劉嘉雷. 小興安嶺林火動態研究[J]. 陸地生態系統與保護學報, 2021, 1(1): 47-58. doi: 10.12356/j.2096-8884.2021-0003
引用本文: 田曉瑞, 宗學政, 王志成, 劉嘉雷. 小興安嶺林火動態研究[J]. 陸地生態系統與保護學報, 2021, 1(1): 47-58. doi: 10.12356/j.2096-8884.2021-0003
Xiaorui TIAN, Xuezheng ZONG, Zhicheng WANG, Jialei LIU. Study on the Fire Regime in Xiaoxing'an Mountains,China[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 47-58. doi: 10.12356/j.2096-8884.2021-0003
Citation: Xiaorui TIAN, Xuezheng ZONG, Zhicheng WANG, Jialei LIU. Study on the Fire Regime in Xiaoxing'an Mountains,China[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 47-58. doi: 10.12356/j.2096-8884.2021-0003

小興安嶺林火動態研究

doi: 10.12356/j.2096-8884.2021-0003
基金項目: 國家自然科學基金資助項目(31770695);中國林業科學研究院基本科研業務費專項(CAFYBB2019ZB003)
詳細信息
    作者簡介:

    田曉瑞:E-mail:tianxr@caf.ac.cn

    通訊作者:

    E-mail:tianxr@caf.ac.cn

  • 中圖分類號: S762

Study on the Fire Regime in Xiaoxing'an Mountains,China

  • 摘要:   目的  研究小興安嶺地區的森林火險與火發生規律,調查主要森林類型的可燃物特征,分析潛在火行為,為林火管理提供科學依據。  方法  根據1980—2010年地面氣象觀測數據,利用R計算火險天氣指數,分析火險指數、火發生和過火面積的變化。采用標準地方法調查小興安嶺6種典型林分的可燃物特征,利用可燃物特征分類系統模擬各可燃物類型在不同天氣情景下的潛在地表火和樹冠火行為特征。  結果  小興安嶺的林火主要發生在春季(4—6月)和秋季(9—10月)2個時段,干旱年份夏季也可能發生森林火災。森林的地表可燃物積累較多,主要為地表凋落物和木質可燃物(<1000 h),地表火強度隨可燃物含水率降低而增大。林下植被以繡線菊(Spiraea salicifolia)-鐵線蕨(Adiantum capillus-veneris)為主的林分潛在地表火蔓延速度顯著高于林下以暴馬丁香(Syringa reticulata subsp. amurensis)-苔草(Carex sp.)為主的林分,但其火強度低于林下以暴馬丁香-苔草為主的林分。針葉林和針闊混交林都可能發生樹冠火。  結論  林火管理有效減少了火發生。小興安嶺北部林區可燃物載量多,潛在火行為相關指數高,是未來林火管理的重點區域。干旱情景下,6種林分類型均有發生樹冠火的可能,可以通過清理可燃物梯和減小針葉樹種的密度來降低森林火災風險。
  • 圖  1  研究區海拔(a)及植被類型(b)

    Figure  1.  Elevation (a) and vegetation types (b) of study area

    圖  2  1953—2016年火發生次數及過火面積

    Figure  2.  Annual fires and burned area during the period of 1953–2016

    圖  3  1953—1987年和1988—2016年2個時段研究區的火發生頻度和場均過火面積分布?。╝)1953—1987年火發生頻度;(b)1988—2016年火發生頻度;(c)1953—1987年場均過火面積;(d)1988—2016年場均過火面積

    Figure  3.  Distribution of fires and average burned areas per fire in two periods (a) distribution of fire frequency during the period of 1953–1987; (b) distribution of fire frequency during the period of 1988–2016; (c) distribution of average burned areas per fire during the period of 1953–1987; (d) distribution of average burned areas per fire during the period of 1988–2016

    圖  4  1953—1987年和1988—2016年2個時段的火發生分布

    Figure  4.  Distribution of fire sources during the periods of 1953—1987 and 1988—2016

    圖  5  春季(a)和秋季(b)火險期的降水量分布

    Figure  5.  The precipitation distribution of spring (a) and autumn (b) fire seasons

    圖  6  火發生次數、過火面積、火險指數和降水年內變化?。╝)月均過火面積分布;(b)每日降水和FWI中位值變化

    Figure  6.  Changes of fires, burned area, FWI, and precipitation in study area (a) Distribution of average burned areas in month; (b) variation of daily 50th precipitation and FWI

    圖  7  不同可燃物含水率情景下各林分的潛在地表火行為?。╝)火蔓延速度;(b)火焰高度;(c)火強度

    注:林分類型同表1。Forest types are the same as Table 1.

    Figure  7.  Surface fire behavior of six forest types under scenarios with various moisture content of fuels (a) fire spread speed; (b) flame height; (c) fire intensity

    圖  8  不同林分的潛在樹冠火行為

    Figure  8.  Potential crown fire behavior of each forest type

    表  1  調查林分的基本信息

    Table  1.   Base information of each forest type

    林分類型
    Forest type
    樹種組成
    Tree species composition
    郁閉度
    Canopy density
    平均樹高
    Average height/m
    胸徑
    Average DBH/cm
    密度
    Density/
    (tree/hm2)
    海拔
    Altitude/m
    坡向
    Aspect
    坡度
    Slope/(°)
    灌木
    Shrub
    草本
    Grass
    15落5樺0.7810.8/2.816.6/21183347陽坡3暴馬
    丁香
    苔草
    27楓2紅1榛0.8514.4/2.225.1/1.41234481.4陽坡3
    36落4暴0.818.6/1.917.4/1.1921490.7陽坡3
    46落2椴1紅1楓0.710.3/8.6/20.3/5.913.7/14.8/29.1/4.1404331.1陽坡3繡線菊鐵線蕨
    55落3白2毛0.757.8/4.7/5.711.5/3.3/5.3890387.2陽坡3
    67紅2落1白0.7514.1/17.6/1721.5/23.2/19.6344383.4陽坡3
      注:落——落葉松(Larix gmelinii);樺——黒樺(Rhamnus maximovicziana);楓——五角楓(Acer pictum subsp. mono);紅——紅松(Pinus koraiensis);榛——榛(Corylus heterophylla);暴——暴馬丁香(Syringa reticulata subsp. amurensis);椴——椴樹(Tilia tuan);白——白樺(Betula platyphylla) ;苔草(Carex sp.) ;繡線菊(Spiraea salicifolia) ;鐵線蕨(Adiantum capillus-veneris) 。
    下載: 導出CSV

    表  2  可燃物特征分類系統的可燃物參數

    Table  2.   Fuel parameters in FCCS

    可燃物層 Fuel stratum參數 Parameters
    冠層 Canopy主要、次要喬木(活立木與死木)的郁閉度、平均樹高、胸徑、密度、可燃物梯高度 Canopy density, average height, diameter at breast height, density, and fuel ladder height of primary and secondary trees (living and dead trees)
    灌木 Shrub主要、次要灌木的蓋度、高度、活植株比例、載量及種類Coverage, height, proportion of living plants, loading and species of main and secondary shrubs
    草本 Herb主要、次要草本的蓋度、高度、活植株比例、載量及種類Coverage, height, proportion of living plants, loading and species of primary and secondary herbs
    倒木 Wood倒木蓋度、各時滯可燃物(1~10000 h)的載量和種類Coverage of fallen wood, loading and type of each time lag (1~10000 h) fuels
    地表凋落物與地衣苔蘚
    Litter-Lichen-Moss
    地表可燃物、地衣和苔蘚的蓋度、厚度、種類及載量 Coverage, thickness, species, and loading of surface fuel, lichen, and moss
    地下可燃物 Ground fuel半分解腐殖質和分解腐殖質的蓋度、厚度、類型及載量 Coverage, thickness, type, and loading of semi-decomposed humus and decomposed humus
    下載: 導出CSV

    表  3  可燃物含水率情景(%)

    Table  3.   Fuel moisture scenarios (%)

    情景
    Scenario
    含水率情景描述
    Scenario description of various fuel moisture content
    草本
    Herb
    灌木
    Shrub
    樹冠
    Crown
    1 h10 h100 h
    D1L1死可燃物含水率極低、草本植物全部干枯
    Very low moisture content of dead fuels, fully cured herb
    306060345
    D1L2死可燃物含水率極低、2/3草本植物干枯
    Very low moisture content of dead fuels, 2/3 cured herb
    609090345
    D1L3死可燃物含水率極低、1/3草本植物干枯
    Very low moisture content of dead fuels, 1/3 cured herb
    90120120345
    D1L4死可燃物含水率極低、草本植物未干枯
    Very low moisture content of dead fuels, fully green herb
    120150150345
    D2L1死可燃物含水率低、草本植物全部干枯
    Low moisture content of dead fuels, fully cured herb
    306060678
    D2L2死可燃物含水率低、2/3草本植物干枯
    Low moisture content of dead fuels, 2/3 cured herb
    609060678
    D2L3死可燃物含水率低、1/3草本植物干枯
    Low moisture content of dead fuels, 1/3 cured herb
    9012060678
    D2L4死可燃物含水率低、草本植物未干枯
    Low moisture content of dead fuels, fully green herb
    12015090678
    D3L1死可燃物含水率中等、草本植物全部干枯
    Moderate moisture content of dead fuels, fully cured herb
    30609091011
    D3L2死可燃物含水率中等、2/3草本植物干枯
    Moderate moisture content of dead fuels, 2/3 cured herb
    60909091011
    D3L3死可燃物含水率中等、1/3草本植物干枯
    Moderate moisture content of dead fuels, 1/3 cured herb
    9012012091011
    D3L4死可燃物含水率中等、草本植物未干枯
    Moderate moisture content of dead fuels, fully green herb
    12015012091011
    D4L1死可燃物含水率高、草本植物全部干枯
    High moisture content of dead fuels, fully cured herb
    3060120121314
    D4L2死可燃物含水率高、2/3草本植物干枯
    High moisture content of dead fuels, 2/3 cured herb
    6090150121314
    D4L3死可燃物含水率高、1/3草本植物干枯
    High moisture content of dead fuels, 1/3 cured herb
    90120150121314
    D4L4死可燃物含水率高、草本植物未干枯
    High moisture content of dead fuels, fully green herb
    120150150121314
    下載: 導出CSV

    表  4  各林分可燃物特征

    Table  4.   Fuel characteristics of each forest type

    林分
    Forest type
    死樹密度
    Density of dead trees/
    (tree/hm2)
    可燃物梯
    (最低)
    Fuel ladder (minimum)/
    cm
    灌木
    Shrub
    草本
    Grass
    地表可燃物
    Surface fuel/(t/hm2)
    平均高度
    Average height/cm
    活植株比例
    Percent live/
    %
    載量
    Load/
    (t/hm2)
    平均高度
    Average height/
    cm
    活植株比例
    Percent live/%
    載量
    Loading/
    (t/hm2)
    厚度
    Depth/
    cm
    凋落物
    Litter
    1 h10 h100 h1 000 h
    125330551000.4 24850.71.80.6 0.50.51.70
    21429731000.1271000.11.00.80.10.10.20
    309401000.2151000.51.30.60.10.10.20
    4049611000.252950.42.01.00.10.10.10
    509581000.115500.41.31.30.10.20.30
    60150671000.2151000.22.50.60.10.10.20.3
    下載: 導出CSV

    <p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"></p>
    <output id="3zz5p"></output><video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <output id="3zz5p"></output>
    <video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

    <video id="3zz5p"><p id="3zz5p"></p></video>

    <video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

    <noframes id="3zz5p"><p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <p id="3zz5p"></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"><delect id="3zz5p"></delect></p>

    <video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
    <p id="3zz5p"></p>

    <delect id="3zz5p"></delect>
    屌“啊……慢点…肏
  • [1] 蔡衛紅, 王曉紅, 于宏洲, 等, 2013. 基于Rothermel模型的可燃物參數對林火行為影響的計算機仿真[J]. 中南林業科技大學學報, 33(11): 34-41. doi:  10.3969/j.issn.1673-923X.2013.11.007
    [2] 杜春英, 于成龍, 劉丹, 2010. 大興安嶺地區雷擊火發生環境分析[J]. 中國農業氣象, 31(4): 596-599. doi:  10.3969/j.issn.1000-6362.2010.04.020
    [3] 郭福濤, 蘇漳文, 馬祥慶, 等, 2015. 大興安嶺塔河地區雷擊火發生驅動因子綜合分析[J]. 生態學報, 35(19): 6439-6448.
    [4] 國家林業局, (2016-12-29)[2020-11-6]. 全國森林防火規劃(2016-2025)[EB/OL]. http://www.gov.cn/xinwen/2016-12/29/content_5154054.htm.
    [5] 侯俊峰, 2017. 伊春林區森林火災發生規律及風險評估研究 [D]. 北京: 北京林業大學.
    [6] 胡海清, 李楠, 孫龍, 等, 2011. 伊春地區森林火災時空分布格局[J]. 東北林業大學學報, 39(10): 67-70. doi:  10.3969/j.issn.1000-5382.2011.10.019
    [7] 胡海清, 羅斯生, 羅碧珍, 等, 2017. 森林可燃物含水率及其預測模型研究進展[J]. 世界林業研究, 30(3): 64-69.
    [8] 李順, 吳志偉, 梁宇, 等, 2017. 大興安嶺林火發生的時空聚集性特征[J]. 生態學雜志, 36(1): 198-204.
    [9] 梁慧玲, 郭福濤, 王文輝, 等, 2015. 小興安嶺伊春地區林火發生自然影響因子及其影響力[J]. 東北林業大學學報, 43(12): 29-35. doi:  10.3969/j.issn.1000-5382.2015.12.007
    [10] 劉林馨, 2012. 小興安嶺森林生態系統植物多樣性及生態服務功能價值研究 [D]. 哈爾濱: 東北林業大學.
    [11] 劉興周, 1992. 小興安嶺林火發生和氣象因子的關系[J]. 森林防火, (6): 34-38.
    [12] 劉志華, 楊健, 賀紅士, 等, 2011. 黑龍江大興安嶺呼中林區火燒點格局分析及影響因素[J]. 生態學報, 31(6): 1669-1677.
    [13] 苗慶林, 劉耀香, 田曉瑞, 2014. 林火管理對火動態的影響[J]. 世界林業研究, 27(4): 42-47.
    [14] 苗慶林, 田曉瑞, 2016. 多氣候情景下大興安嶺森林燃燒性評估[J]. 林業科學, 52(10): 109-116. doi:  10.11707/j.1001-7488.20161014
    [15] 倪長虹, 邸雪穎, 2009. 黑龍江省大興安嶺雷擊火發生規律[J]. 東北林業大學學報, 37(1): 55-57+75. doi:  10.3969/j.issn.1000-5382.2009.01.020
    [16] 盛裴軒, 毛節泰, 李建國, 等, 2013. 大氣物理學 [M]. 北京: 北京大學出版社.
    [17] 田曉瑞, 舒立福, 王明玉, 2005. 林火動態變化對我國東北地區森林生態系統的影響[J]. 森林防火, (1): 21-25. doi:  10.3969/j.issn.1002-2511.2005.01.010
    [18] 田曉瑞, 舒立福, 趙鳳君, 等, 2012. 大興安嶺雷擊火發生條件分析[J]. 林業科學, 48(7): 98-103. doi:  10.11707/j.1001-7488.20120716
    [19] 田曉瑞, 舒立福, 趙鳳君, 等, 2015. 中國主要生態地理區的林火動態特征分析[J]. 林業科學, 51(9): 71-77.
    [20] 田曉瑞, 王明玉, 殷麗, 等, 2009. 大興安嶺南部春季火行為特征及可燃物消耗[J]. 林業科學, 45(3): 90-95. doi:  10.3321/j.issn:1001-7488.2009.03.016
    [21] 田曉瑞, 趙鳳君, 舒立福, 等, 2014. 1961—2010年中國植被區的氣候與林火動態變化[J]. 應用生態學報, 25(11): 3279-3286.
    [22] 于洋, 鄒莉, 孫婷婷, 等, 2013. 小興安嶺原始紅松林的植被多樣性[J]. 草業科學, 30(8): 1175-1181.
    [23] 張曉芳, 董文站, 程春香, 等, 2009. 小興安嶺伊春林區森林火災特征及變化規律分析[J]. 黑龍江氣象, 26(4): 23-25. doi:  10.3969/j.issn.1002-252X.2009.04.010
    [24] 鄭瓊, 邸雪穎, 金森, 等, 2013. 伊春地區1980—2010年森林火災時空格局及影響因子[J]. 林業科學, 49(4): 157-163. doi:  10.11707/j.1001-7488.20130424
    [25] 宗學政, 田曉瑞, 2021. 可燃物處理對大興安嶺地區主要林型火行為的影響[J]. 林業科學, 57(2): 139-149. doi:  10.11707/j.1001-7488.20210214
    [26] Cai L, He H S, Liang Y, et al, 2019. Analysis of the uncertainty of fuel model parameters in wildland fire modelling of a boreal forest in north-east China[J]. International Journal of Wildland Fire, 28(3): 205-215. doi:  10.1071/WF18083
    [27] Calheiros T, Pereira M G, Nunes J P, 2021. Assessing impacts of future climate change on extreme fire weather and pyro-regions in Iberian Peninsula[J]. Science of The Total Environment, 754: 142233. doi:  10.1016/j.scitotenv.2020.142233
    [28] Christopoulou A, Mallinis G, Vassilakis E, et al, 2019. Assessing the impact of different landscape features on post-fire forest recovery with multitemporal remote sensing data: the case of Mount Taygetos (southern Greece)[J]. International Journal of Wildland Fire, 28(7): 521-532.
    [29] Cronan J B, Wright C S, Petrova M, 2015. Effects of dormant and growing season burning on surface fuels and potential fire behavior in northern Florida longleaf pine (Pinus palustris) flatwoods[J]. Forest Ecology and Management, 354: 318-333. doi:  10.1016/j.foreco.2015.05.018
    [30] Curt T, Fréjaville T, 2017. Wildfire policy in Mediterranean France: how far is it efficient and sustainable?[J]. Risk Analysis, 38(3): 472-488.
    [31] Dasgupta S, Qu J J, Hao X, et al, 2007. Evaluating remotely sensed live fuel moisture estimations for fire behavior predictions in Georgia, USA[J]. Remote Sensing of Environment, 108(2): 138-150. doi:  10.1016/j.rse.2006.06.023
    [32] Eskandari S, Miesel J R, Pourghasemi H R, 2020. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran[J]. Ecological Indicators, 118: 106720. doi:  10.1016/j.ecolind.2020.106720
    [33] Hanes C C, Wang X, Jain P, et al, 2018. Fire-regime changes in Canada over the last half century[J]. Canadian Journal of Forest Research, 49(3): 256-269.
    [34] Heydari M, Rostamy A, Najafi F, et al, 2017. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran[J]. Journal of Forestry Research, 28(1): 95-104.
    [35] Hollingsworth L W T, Kurth L L, Parresol B R, et al, 2012. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States[J]. Forest Ecology and Management, 273: 43-49. doi:  10.1016/j.foreco.2011.05.020
    [36] Hurteau M, North M, 2008. Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios[J]. Frontiers in Ecology and the Environment, 7(8): 409-414.
    [37] Jyoteeshkumar R P, Sharples J J, Lewis S C, et al, 2021. Modulating influence of drought on the synergy between heatwaves and dead fine fuel moisture content of bushfire fuels in the Southeast Australian region[J]. Weather and Climate Extremes, 31: 100300. doi:  10.1016/j.wace.2020.100300
    [38] Keane R E, Gray K, Bacciu V, et al, 2012. Spatial scaling of wildland fuels for six forest and rangeland ecosystems of the northern Rocky Mountains, USA[J]. Landscape Ecology, 27(8): 1213-1234. doi:  10.1007/s10980-012-9773-9
    [39] Keyser A R, Westerling A L, 2019. Predicting increasing high severity area burned for three forested regions in the western United States using extreme value theory[J]. Forest Ecology and Management, 432: 694-706. doi:  10.1016/j.foreco.2018.09.027
    [40] Krawchuk M A, Haire S L, Coop J, et al, 2016. Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America[J]. Ecosphere, 7(12): e01632.
    [41] Lawson B D, Armitage O B, 2008. Weather guide for the Canadian forest fire danger rating system [M]. Edmonton, Alberta: Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre.
    [42] Liu Z, 2016. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China[J]. Scientific Reports, 6: 37572. doi:  10.1038/srep37572
    [43] Matthews S, Sullivan A L, Watson P, et al, 2012. Climate change, fuel and fire behaviour in a eucalypt forest[J]. Global Change Biology, 18(10): 3212-3223. doi:  10.1111/j.1365-2486.2012.02768.x
    [44] McKenzie D M, Raymond C, Kellogg L K B, et al, 2007. Mapping fuels at multiple scales: landscape application of the Fuel Characteristic Classification System[J]. Canadian Journal of Forest Research, 37(12): 2421-2437. doi:  10.1139/X07-056
    [45] Miller E A, 2020. A conceptual interpretation of the drought code of the Canadian forest fire weather index system[J]. Fire, 3(2): 23. doi:  10.3390/fire3020023
    [46] Mitsopoulos I D, Dimitrakopoulos A P, 2007. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests[J]. Annals of Forest Science, 64(3): 287-299. doi:  10.1051/forest:2007006
    [47] Ottmar R, Sandberg D, Riccardi C, et al, 2007. An overview of the Fuel Characteristic Classification System: quantifying, classifying, and creating fuelbeds for resource planning[J]. Canadian Journal of Forest Research, 37(12): 2383-2393. doi:  10.1139/X07-077
    [48] Paritsis J, Landesmann J B, Kitzberger T, et al, 2018. Pine plantations and invasion alter fuel structure and potential fire behavior in a patagonian forest-steppe ecotone[J]. Forests, 9(3): 117. doi:  10.3390/f9030117
    [49] Parresol B, Blake J, Thompson A, 2012. Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA[J]. Forest Ecology and Management, 273: 29-42. doi:  10.1016/j.foreco.2011.08.003
    [50] Pausas J G, Fernández-Mu?oz S, 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime[J]. Climatic Change, 110(1-2): 215-226. doi:  10.1007/s10584-011-0060-6
    [51] Pettinari M L, Chuvieco E, 2016. Generation of a global fuel data set using the Fuel Characteristic Classification System[J]. Biogeosciences, 12(20): 2061-2076.
    [52] Piqué M, Domènech R, 2018. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain[J]. Science of the Total Environment, 618: 1539-1546. doi:  10.1016/j.scitotenv.2017.09.316
    [53] Riccardi C, Prichard S, Sandberg D, et al, 2007. Quantifying physical characteristics of wildland fuels using the Fuel Characteristic Classification System[J]. Canadian Journal of Forest Research, 37(12): 2413-2420. doi:  10.1139/X07-175
    [54] Rodrigues M, Jiménez-Ruano A, de la Riva J, 2020. Fire regime dynamics in mainland Spain. Part 1: drivers of change[J]. Science of The Total Environment, 721: 135841. doi:  10.1016/j.scitotenv.2019.135841
    [55] Sandberg D V, Riccardi C L, Schaaf M D, 2007. Fire potential rating for wildland fuelbeds using the Fuel Characteristic Classification System[J]. Canadian Journal of Forest Research, 37(12): 2456-2463. doi:  10.1139/X07-093
    [56] Schoennagel T, Veblen T T, Negron J F, et al, 2012. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA[J]. Plos One, 7(1): e30002. doi:  10.1371/journal.pone.0030002
    [57] Sherriff R L, Veblen T T, 2007. A spatially-explicit reconstruction of historical fire occurrence in the ponderosa pine zone of the Colorado front range[J]. Ecosystems, 10(2): 311-323. doi:  10.1007/s10021-007-9022-2
    [58] Stocks B J, Lynham T J, Lawson B D, et al, 1989. Canadian forest fire danger rating system: an overview[J]. The Forestry Chronicle, 65(4): 258-265. doi:  10.5558/tfc65258-4
    [59] Stocks B J, Mason J A, Todd J B, et al, 2002. Large forest fires in Canada, 1959–1997[J]. Journal of Geophysical Research: Atmospheres, 107: 8149.
    [60] Su Z, Hu H, Wang G, et al, 2018. Using GIS and Random Forests to identify fire drivers in a forest city, Yichun, China[J]. Geomatics, Natural Hazards and Risk, 9(1): 1207-1229. doi:  10.1080/19475705.2018.1505667
    [61] Tian X R, Cui W, Shu L, 2020. Evaluating fire management effectiveness with a burn probability model in Daxing’anling, China[J]. Canadian Journal of Forest Research, 50: 670-679. doi:  10.1139/cjfr-2019-0413
    [62] Tian X R, McRae D J, Jin J, et al, 2011. Wildfires and the Canadian Forest Fire Weather Index system for the Daxing’anling region of China[J]. International Journal of Wildland Fire, 20(4): 963-973.
    [63] Torres F T P, Romeiro J M N, Santos A C d A, et al, 2018. Fire danger index efficiency as a function of fuel moisture and fire behavior[J]. Science of the Total Environment, 631-632: 1304-1310. doi:  10.1016/j.scitotenv.2018.03.121
    [64] Wang X L, Wotton B M, Cantin A S, et al, 2017. Cffdrs: an R package for the Canadian forest fire danger rating system[J]. Ecological Processes, 6(1): 5. doi:  10.1186/s13717-017-0070-z
    [65] Yang S, Ge M, Li X, et al, 2020. The spatial distribution of the normal reference values of the activated partial thromboplastin time based on ArcGIS and GeoDA[J]. International Journal of Biometeorology, 64: 779-790. doi:  10.1007/s00484-020-01868-2
    [66] Zhao F, Liu Y, Shu L, 2020. Change in the fire season pattern from bimodal to unimodal under climate change: The case of Daxing'anling in northeast China[J]. Agricultural and Forest Meteorology, 291: 108075. doi:  10.1016/j.agrformet.2020.108075
  • 加載中
圖(8) / 表(4)
計量
  • 文章訪問數:  1065
  • HTML全文瀏覽量:  453
  • PDF下載量:  182
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-28
  • 網絡出版日期:  2021-06-17
  • 刊出日期:  2021-10-30

目錄

    /

    返回文章
    返回