<p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"></p>
<output id="3zz5p"></output><video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<p id="3zz5p"></p>
<p id="3zz5p"></p>

<output id="3zz5p"></output>
<video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

<video id="3zz5p"><p id="3zz5p"></p></video>

<video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

<noframes id="3zz5p"><p id="3zz5p"></p>
<p id="3zz5p"></p>

<p id="3zz5p"></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"><delect id="3zz5p"></delect></p>

<video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
<p id="3zz5p"></p>

<delect id="3zz5p"></delect>

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

氣候變暖及大尺度氣候波動對全球林火與森林碳排放的影響

胡源 趙鳳君 陳鋒 舒立福

胡源, 趙鳳君, 陳鋒, 舒立福. 氣候變暖及大尺度氣候波動對全球林火與森林碳排放的影響[J]. 陸地生態系統與保護學報, 2021, 1(1): 75-81. doi: 10.12356/j.2096-8884.2021-0004
引用本文: 胡源, 趙鳳君, 陳鋒, 舒立福. 氣候變暖及大尺度氣候波動對全球林火與森林碳排放的影響[J]. 陸地生態系統與保護學報, 2021, 1(1): 75-81. doi: 10.12356/j.2096-8884.2021-0004
Yuan HU, Fengjun ZHAO, Feng CHEN, Lifu SHU. Impacts of Global Warming and Large-scale Climate Fluctuation on Forest Fires and Forest Carbon Emissions[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 75-81. doi: 10.12356/j.2096-8884.2021-0004
Citation: Yuan HU, Fengjun ZHAO, Feng CHEN, Lifu SHU. Impacts of Global Warming and Large-scale Climate Fluctuation on Forest Fires and Forest Carbon Emissions[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 75-81. doi: 10.12356/j.2096-8884.2021-0004

氣候變暖及大尺度氣候波動對全球林火與森林碳排放的影響

doi: 10.12356/j.2096-8884.2021-0004
基金項目: 國家自然科學基金(31971667)
詳細信息
    作者簡介:

    胡源:E-mail: 201821490021@mail.bnu.edu.cn

    通訊作者:

    E-mail: 201821490021@mail.bnu.edu.cn

  • 中圖分類號: S757

Impacts of Global Warming and Large-scale Climate Fluctuation on Forest Fires and Forest Carbon Emissions

  • 摘要: 森林在全球碳循環過程中起著重要作用。而火是干擾森林的重要因子。隨著全球變暖日益顯著、極端氣候事件增加,熱浪、干旱以及大尺度氣候波動等造成的森林火災頻率和強度不斷增加,對全球森林生態系統碳循環產生了重大影響。研究氣候變暖對林火和碳排放的影響,對提高生態環境的管理水平和可持續發展有重要意義。文中簡述氣候變暖對林火動態和森林碳循環的影響,以及火災造成的損失,分析大尺度氣候波動與林火發生的關系,最后,預測和討論了未來氣候變化情景下的火災發展趨勢,主要結論如下:1)氣候變暖和干旱會導致林火發生頻率和過火面積增加、強度增強;北半球和溫帶地區火險期提前、火險季節長度延長;森林碳排放量增加;森林火災不僅直接造成森林面積銳減、污染大氣環境、影響生物地球化學循環,甚至還給國家和人民來帶巨大的經濟和生命損失。2)大尺度氣候波動與林火動態有非常密切的聯系:與厄爾尼諾-南方濤動(El Ni?o-Southern Oscillation, ENSO)相關的太平洋海面溫度(Sea Surface Temperature, SST)異常的空間分布可能受太平洋年代際濤動(Pacific Decadal Oscillation, PDO)調控,它通過與ENSO同相(重疊)或異相(抵消)來調節ENSO的影響。ENSO和PDO都與降水、溫度和干旱嚴重程度密切相關,極大增加了火災的風險、頻率和過火面積;北大西洋年代際濤動(Atlantic Multi-decadal Oscillation, AMO)主要影響北半球的溫度和降水,溫暖的AMO將導致更高的溫度、森林火災次數和年林火面積;北極濤動(Arctic Oscillation, AO)主要影響歐亞大陸和北美大陸北部的氣溫和降水,AO處于正相位時,氣溫升高,環境干燥,會增加北半球中高緯度地區的火災發生頻率。3)未來氣候情景下,不僅北半球會變得更加干旱和溫暖,全球的森林火險指數和火災數量也都有增加趨勢。由于氣候變化和人類活動的復雜性,這種趨勢還存在很大不確定性,因此還需深入研究氣候變化對林火關系的影響機理,以加強人類對火—氣候現狀的認識。
  • [1] 白夜, 王博, 賈宜松, 等, 2020. 美國加州森林火災概述及啟示[J]. 消防科學與技術, 39(4): 557-560. doi:  10.3969/j.issn.1009-0029.2020.04.036
    [2] 傅澤強, 戴爾阜, 2001. 大興安嶺森林火險季節動態特征及其氣候條件分析[J]. 自然災害學報, 10(4): 113-116. doi:  10.3969/j.issn.1004-4574.2001.04.021
    [3] 龔道溢, 王紹武, 2003. 近百年北極濤動對中國冬季氣候的影響[J]. 地理學報, 58(4): 559-568. doi:  10.3321/j.issn:0375-5444.2003.04.010
    [4] 郭天峰, 周宇飛, 2015. 森林火災與氣候變化[J]. 森林防火, (3): 34-37. doi:  10.3969/j.issn.1002-2511.2015.03.012
    [5] 胡海清, 魏書精, 孫龍, 等, 2013. 氣候變化、火干擾與生態系統碳循環[J]. 干旱區地理, 36(1): 57-75.
    [6] 李樹枝, 郭瑞雪, 2016. 2015年全球土地利用現狀分析及啟示[J]. 國土資源情報, (12): 3-9. doi:  10.3969/j.issn.1674-3709.2016.12.001
    [7] 陸昕, 黃濱, 楊素芝, 等, 2019. 大興安嶺地區森林火災發生的原因和撲救特征[J]. 東北林業大學學報, 47(11): 77-80. doi:  10.3969/j.issn.1000-5382.2019.11.015
    [8] 琚建華, 任菊章, 呂俊梅, 2004. 北極濤動年代際變化對東亞北部冬季氣溫增暖的影響[J]. 高原氣象, 23(4): 429-434. doi:  10.3321/j.issn:1000-0534.2004.04.002
    [9] 屈靜玄, 龔道溢, 李桑, 2015. 春季北極濤動對南海氣候的影響[J]. 科學通報, 60(24): 2327-2337.
    [10] 舒立福, 田曉瑞, 李紅, 1998. 世界森林火災狀況綜述[J]. 世界林業研究, (6): 42-48.
    [11] 田曉瑞, 舒立福, 阿力甫江, 2003. 林火研究綜述(Ⅲ)-ENSO對森林火災的影響[J]. 世界林業研究, 16(5): 22-25. doi:  10.3969/j.issn.1001-4241.2003.05.005
    [12] 田曉瑞, 舒立福, 王明玉, 2003. 1991~2000年中國森林火災直接釋放碳量估算[J]. 火災科學, 12(1): 6-10. doi:  10.3969/j.issn.1004-5309.2003.01.002
    [13] 田曉瑞, 舒立福, 趙鳳君, 等, 2017. 氣候變化對中國森林火險的影響[J]. 林業科學, 53(7): 159-169. doi:  10.11707/j.1001-7488.20170716
    [14] 汪少華, 張茂震, 趙平安, 等, 2011. 基于TM影像、森林資源清查數據和人工神經網絡的森林碳空間分布模擬[J]. 生態學報, 31(04): 998-1008.
    [15] 王彥明, 2009. 北大西洋長周期年代際振蕩(AMO)對亞洲季風區氣候的影響—觀測及多模式模擬[D]. 青島: 中國海洋大學.
    [16] 岳超, 羅彩訪, 舒立福, 等, 2020. 全球變化背景下野火研究進展[J]. 生態學報, 40(2): 385-401.
    [17] 余新曉, 魯紹偉, 靳芳, 等, 2005. 中國森林生態系統服務功能價值評估[J]. 生態學報, 25(8): 2096-2102. doi:  10.3321/j.issn:1000-0933.2005.08.038
    [18] 張志, 許文浩, 2020. 澳大利亞2019-2020森林火災對我國應急管理體系建設的啟示[J]. 中國應急救援, (2): 18-22. doi:  10.3969/j.issn.1673-5579.2020.02.005
    [19] 趙鳳君, 王明玉, 舒立福, 等, 2009. 氣候變化對林火動態的影響研究進展[J]. 氣候變化研究進展, 5(1): 50-55. doi:  10.3969/j.issn.1673-1719.2009.01.010
    [20] 周宇飛, 王振師, 吳澤鵬, 等, 2014. 廣東森林火災碳排放及應對氣候變化策略[J]. 廣東林業科技, 30(6): 67-71.
    [21] Abatzoglou J T, Williams A P, 2016. Impact of anthropogenic climate change on wildfire across western US forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(42): 11770-11775. doi:  10.1073/pnas.1607171113
    [22] Abatzoglou J T, Williams A P, Boschetti L, et al, 2018. Global patterns of interannual climate-fire relationships[J]. Global Change Biology, 24(11): 5164-5175. doi:  10.1111/gcb.14405
    [23] Andela N, Morton D C, Giglio L, et al, 2017. A human-driven decline in global burned area[J]. Science, 356(6345): 1356-1362. doi:  10.1126/science.aal4108
    [24] Aragao L E O C, Anderson L O, Fonseca M G, et al, 2018. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions[J]. Nature Communications, 9(1): 536. doi:  10.1038/s41467-017-02771-y
    [25] Balzter H, Gerard F F, George C T, et al, 2005. Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia[J]. Geophysical research letters, 32(147): 337-349.
    [26] Beverly J L, Flannigan M D, Stocks B J, et al, 2011. The association between Northern Hemisphere climate patterns and interannual variability in Canadian wildfire activity[J]. Canadian Journal of Forest Research, 41(11): 2193-2201. doi:  10.1139/x11-131
    [27] Cai W, Cowan T, Raupach M, 2009. Positive Indian Ocean Dipole events precondition southeast Australia bushfires[J]. Geophysical Research Letters, 36: L19710. doi:  10.1029/2009GL039902
    [28] Cai W, Wang G, Santoso A, et al, 2015. Increased frequency of extreme La Nina events under greenhouse warming[J]. Nature Climate Change, 5(2): 132-137. doi:  10.1038/nclimate2492
    [29] Chiew F, Piechota T C, Dracup J A, et al, 1998. El Nino Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting[J]. Journal of Hydrology, 204(1-4): 138-149. doi:  10.1016/S0022-1694(97)00121-2
    [30] Cleary D, Grill A, 2004. Butterfly response to severe ENSO-induced forest fires in Borneo[J]. Ecological Entomology, 29(6): 666-676. doi:  10.1111/j.0307-6946.2004.00649.x
    [31] Crutzen P J, Andreae M O, 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles[J]. Science, 250(4988): 1669-1678. doi:  10.1126/science.250.4988.1669
    [32] D'Arrigo R D, Cook E R, Mann M E, et al, 2003. Tree-ring reconstructions of temperature and sea-level pressure variability associated with the warm-season Arctic Oscillation since AD 1650[J]. Geophysical Research Letters, 30(11): 1-3.
    [33] Delworth T L, Zeng F, Vecchi G A, et al, 2016. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere[J]. Nature Geoscience, 9(7): 509-512. doi:  10.1038/ngeo2738
    [34] Dennison P E, Brewer S C, Arnold J D, et al, 2014. Large wildfire trends in the western United States, 1984-2011[J]. Geophysical Research Letters, 41(8): 2928-2933. doi:  10.1002/2014GL059576
    [35] Dixon RK, Krankina O N, 1993. Forest fires in Russia: carbon dioxide emission to the atmosphere[J]. Canadian Journal Forest Research, 23(4): 700-705. doi:  10.1139/x93-091
    [36] Enfield D B, Mestas-Nunez A M, Trimble P J, 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US[J]. Geophysical Research Letters, 28(10): 2077-2080. doi:  10.1029/2000GL012745
    [37] Flannigan M D, Krawchuk M A, de Groot W J, et al, 2009. Implications of changing climate for global wildland fire[J]. International Journal of Wildland Fire, 18(5): 483-507. doi:  10.1071/WF08187
    [38] Flannigan M, Stocks B, Turetsky M, et al, 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest[J]. Global Change Biology, 15(3): 549-560. doi:  10.1111/j.1365-2486.2008.01660.x
    [39] Flannigan M, Cantin A S, de Groot W J, et al, 2013. Global wildland fire season severity in the 21st century[J]. Forest Ecology and Management, 294(SI): 54-61.
    [40] Gomes J F P, Radovanovic M, 2008. Solar activity as a possible cause of large forest fires-a case study: analysis of the Portuguese forest fires[J]. Science of the Total Environment, 394(1): 197-205. doi:  10.1016/j.scitotenv.2008.01.040
    [41] Hansen M C, Potapov P V, Moore R, et al, 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change[J]. Science, 342(6160): 850-853. doi:  10.1126/science.1244693
    [42] Hao W M, Petkov A, Nordgren B L, et al, 2016. Daily black carbon emissions from fires in northern Eurasia for 2002-2015[J]. Geoscientific Model Development, 9(12): 4461-4474. doi:  10.5194/gmd-9-4461-2016
    [43] Hessl A E, Mckenzie D, Schellhaas R, 2004. Drought and Pacific Decadal Oscillation linked to fire occurrence in the inland Pacific Northwest[J]. Ecological Applications, 14(2): 425-442. doi:  10.1890/03-5019
    [44] Hoffman K M, Gavin D G, Starzomski B M, 2016. Seven hundred years of human-driven and climate-influenced fire activity in a British Columbia coastal temperate rainforest[J]. Royal Society Open Science, 3: 160608. doi:  10.1098/rsos.160608
    [45] Jolly W M, Cochrane M A, Freeborn P H, et al, 2015. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nature Communications, 6: 7537. doi:  10.1038/ncomms8537
    [46] Kelley D I, Bistinas I, Whitley R, et al, 2019. How contemporary bioclimatic and human controls change global fire regimes[J]. Nature Climate Change, 9(9): 690-696. doi:  10.1038/s41558-019-0540-7
    [47] Kerr R A, 2000. A North Atlantic climate pacemaker for the centuries[J]. Science, 288(5473): 1984-1986. doi:  10.1126/science.288.5473.1984
    [48] Kim J, Kug J, Jeong S, et al, 2020. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation[J]. Science Advances, 6(2): eaax3308. doi:  10.1126/sciadv.aax3308
    [49] Kitzberger T, Brown P M, Heyerdahl E K, et al, 2007. Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(2): 543-548. doi:  10.1073/pnas.0606078104
    [50] Knight J R, Folland C K, Scaife A A, 2006. Climate impacts of the Atlantic Multidecadal Oscillation[J]. Geophysical Research Letters, 33(17): 17706. doi:  10.1029/2006GL026242
    [51] Knorr W, Arneth A, Jiang L, 2016. Demographic controls of future global fire risk[J]. Nature Climate Change, 6(8): 781-785. doi:  10.1038/nclimate2999
    [52] Li J, Sun C, Jin F, 2013. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability[J]. Geophysical Research Letters, 40(20): 5497-5502. doi:  10.1002/2013GL057877
    [53] Lu B, Li H, Wu J, et al, 2019. Impact of El Nino and Southern Oscillation on the summer precipitation over Northwest China[J]. Atmospheric Science Letters, 20(8): e928.
    [54] Macias Fauria M, Johnson E A, 2006. Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions[J]. Journal of Geophysical Research Biogeosciences, 111(G4): G04008.
    [55] Mantua N J, Hare S R, Zhang Y, et al, 1997. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 78(6): 1069-1079. doi:  10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    [56] Margolis E Q, Swetnam T W, 2013. Historical fire-climate relationships of upper elevation fire regimes in the south-western United States[J]. International Journal of Wildland Fire, 22(5): 588-598. doi:  10.1071/WF12064
    [57] Mariani M, Fletcher M S, Holz A, et al, 2016. ENSO controls interannual fire activity in southeast Australia[J]. Geophysical Research Letters, 43(20): 10891-10900. doi:  10.1002/2016GL070572
    [58] Milenkovic M, Yamashkin A A, Ducic V, et al, 2017. Forest fires in Portugal- the connection with the Atlantic Multidecadal Oscollation (AMO)[J]. Journal of the Geographical Institute Jovan Cvijic SASA, 67(1): 27-35. doi:  10.2298/IJGI1701027M
    [59] Mo K C, Schemm J E, Yoo S, 2009. Influence of ENSO and the Atlantic multidecadal oscillation on drought over the United States[J]. Journal of Climate, 22(22): 5962-5982. doi:  10.1175/2009JCLI2966.1
    [60] Moritz M A, Parisien M, Batllori E, et al, 2012. Climate change and disruptions to global fire activity[J]. Ecosphere, 3(6): 49.
    [61] Pakdaman M, Naghab S S, Khazanedari L, et al, 2020. Lightning prediction using an ensemble learning approach for northeast of Iran[J]. Journal of Atmospheric and Solar- terrestrial Physics, 209: 105417. doi:  10.1016/j.jastp.2020.105417
    [62] Pan Y, Birdsey R A, Fang J, et al, 2011. A large and persistent carbon sink in the world's forests[J]. Science, 333(6045): 988-993. doi:  10.1126/science.1201609
    [63] Pinol J, Terradas J, Lloret F, 1998. Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain[J]. Climate Change, 38(3): 345-357. doi:  10.1023/A:1005316632105
    [64] Power S, Casey T, Folland C, et al, 1999. Inter-decadal modulation of the impact of ENSO on Australia[J]. Climate Dynamics, 15(5): 319-324. doi:  10.1007/s003820050284
    [65] Price C, Rind D, 1994. Possible implications of global climate change on global lightning distributions and frequencies[J]. Journal of Geophysical Research Atmospheres, 99(D5): 10823-10831. doi:  10.1029/94JD00019
    [66] Romps D M, Seeley J T, Vollaro D, et al, 2014. Projected increase in lightning strikes in the United States due to global warming[J]. Science, 346(6211): 851-854. doi:  10.1126/science.1259100
    [67] Ruffault J, Curt T, Martin-Stpaul N K, et al, 2018. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean[J]. Natural Hazards and Earth System Sciences, 18(3): 847-856. doi:  10.5194/nhess-18-847-2018
    [68] Schoennagel T, Veblen T T, Kulakowski D, et al, 2007. Multidecadal climate variability and climate interactions affect subalpine fire occurrence, Western Colorado (USA)[J]. Ecology, 88(11): 2891-2902. doi:  10.1890/06-1860.1
    [69] Senici, Lucas, Ch en, et al, 2013. Multi-millennial fire frequency and tree abundance differ between xeric and mesic boreal forests in central Canada[J]. The Journal of Ecology, 101(2): 356-367. doi:  10.1111/1365-2745.12047
    [70] Sherriff R L, Veblen T T, 2008. Variability in fire-climate relationships in ponderosa pine forests in the Colorado Front Range[J]. International Journal of Wildland Fire, 17(1): 50-59. doi:  10.1071/WF07029
    [71] Shi C, Sun C, Wu G, et al, 2019. Summer temperature over the Tibetan Plateau modulated by Atlantic multidecadal variability[J]. Journal of Climate, 32(13): 4055-4067. doi:  10.1175/JCLI-D-17-0858.1
    [72] Siegert F, Ruecker G, Hinrichs A, et al, 2001. Increased damage from fires in logged forests during droughts caused by El Nino[J]. Nature, 414(6862): 437-440. doi:  10.1038/35106547
    [73] Staver A C, Archibald S, Levin S, 2011. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states[J]. Ecology, 92(5): 1063-1072. doi:  10.1890/10-1684.1
    [74] Steinman B A, Mann M E, Miller S K, 2015. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures[J]. Science, 347(6225): 988-991. doi:  10.1126/science.1257856
    [75] Taufik M, Torfs P J J F, Uijlenhoet R, et al, 2017. Amplification of wildfire area burnt by hydrological drought in the humid tropics[J]. Nature Climate Change, 7(6): 428-431. doi:  10.1038/nclimate3280
    [76] Thompson D W J, Wallace J M, 1998. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 25(9): 1297-1300. doi:  10.1029/98GL00950
    [77] Turetsky M R, Benscoter B, Page S, et al, 2015. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 8(1): 11-14. doi:  10.1038/ngeo2325
    [78] Vasconcelos S, Fearnside P M, Graca P, et al, 2013. Forest fires in southwestern Brazilian Amazonia: estimates of area and potential carbon emissions[J]. Forest Ecology and Management, 291: 199-208. doi:  10.1016/j.foreco.2012.11.044
    [79] Werf G R, Randerson J T, Giglio L, et al, 2017. Global fire emissions estimates during 1997–2016[J]. Earth System Science Data, 9(2): 697-720. doi:  10.5194/essd-9-697-2017
    [80] Wen N, Liu Z, Li L, 2019. Direct ENSO impact on East Asian summer precipitation in the developing summer[J]. Climate Dynamics, 52: 6799-6815. doi:  10.1007/s00382-018-4545-0
    [81] Westerling A L, Hidalgo H G, Cayan D R, et al, 2006. Warming and earlier spring increase western US forest wildfire activity[J]. Science, 313(5789): 940-943. doi:  10.1126/science.1128834
    [82] Wotton B M, Nock C A, Flannigan M D, 2010. Forest fire occurrence and climate change in Canada[J]. International Journal of Wildland Fire, 19(3): 253-271. doi:  10.1071/WF09002
    [83] Wu R, Yang S, Liu S, et al, 2010. Changes in the relationship between Northeast China summer temperature and ENSO[J]. Journal of Geophysical Research: Atmospheres, 115: D21107. doi:  10.1029/2010JD014422
    [84] Wu X, Mao J, 2019. Decadal changes in interannual dependence of the Bay of Bengal summer monsoon onset on ENSO modulated by the Pacific Decadal Oscillation[J]. Advances in Atmospheric Sciences, 36(12): 1404-1416. doi:  10.1007/s00376-019-9043-8
    [85] Zhang R, Delworth T L, Held I M, 2007. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophysical Research Letters, 34(2): 346-358.
    [86] Zhou W, Chan J C L, 2007. ENSO and the South China Sea summer monsoon onset[J]. International Journal of Climatology, 27(2): 157-167. doi:  10.1002/joc.1380
  • 加載中
計量
  • 文章訪問數:  807
  • HTML全文瀏覽量:  643
  • PDF下載量:  202
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-01-24
  • 網絡出版日期:  2021-10-22
  • 刊出日期:  2021-10-30

目錄

    /

    返回文章
    返回

    <p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"></p>
    <output id="3zz5p"></output><video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <output id="3zz5p"></output>
    <video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

    <video id="3zz5p"><p id="3zz5p"></p></video>

    <video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

    <noframes id="3zz5p"><p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <p id="3zz5p"></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"><delect id="3zz5p"></delect></p>

    <video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
    <p id="3zz5p"></p>

    <delect id="3zz5p"></delect>
    屌“啊……慢点…肏