<p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"></p>
<output id="3zz5p"></output><video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<p id="3zz5p"></p>
<p id="3zz5p"></p>

<output id="3zz5p"></output>
<video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

<video id="3zz5p"><p id="3zz5p"></p></video>

<video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

<noframes id="3zz5p"><p id="3zz5p"></p>
<p id="3zz5p"></p>

<p id="3zz5p"></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"><delect id="3zz5p"></delect></p>

<video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
<p id="3zz5p"></p>

<delect id="3zz5p"></delect>

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

稀有物種的調控機制及其在生態修復中的應用啟示

李意德 陳潔 許涵 劉世榮

李意德, 陳潔, 許涵, 劉世榮. 稀有物種的調控機制及其在生態修復中的應用啟示[J]. 陸地生態系統與保護學報, 2021, 1(1): 1-11. doi: 10.12356/j.2096-8884.2021-0014
引用本文: 李意德, 陳潔, 許涵, 劉世榮. 稀有物種的調控機制及其在生態修復中的應用啟示[J]. 陸地生態系統與保護學報, 2021, 1(1): 1-11. doi: 10.12356/j.2096-8884.2021-0014
Yide LI, Jie CHEN, Han XU, Shirong LIU. Rare Species Regulation Mechanism of Natural Recovery and the Implications on Ecological Restoration in Tropical and Subtropical Forests[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 1-11. doi: 10.12356/j.2096-8884.2021-0014
Citation: Yide LI, Jie CHEN, Han XU, Shirong LIU. Rare Species Regulation Mechanism of Natural Recovery and the Implications on Ecological Restoration in Tropical and Subtropical Forests[J]. Terrestrial Ecosystem and Conservation, 2021, 1(1): 1-11. doi: 10.12356/j.2096-8884.2021-0014

稀有物種的調控機制及其在生態修復中的應用啟示

doi: 10.12356/j.2096-8884.2021-0014
基金項目: 國家科技基礎資源調查項目課題(2019FY101607);國家自然科學基金面上項目(31670628);國家“十二五”科技支撐計劃項目課題(2012BAD22B01);國家自然科學基金重大項目課題(31290223);中央級公益性科研院所基本科研業務費重點專項(CAFYBB2017ZE001)
詳細信息
    作者簡介:

    李意德:E-mail: liyide@126.com

    通訊作者:

    E-mail: ywfj@163.com; liusr@caf.ac.cn

  • 中圖分類號: S718.5

Rare Species Regulation Mechanism of Natural Recovery and the Implications on Ecological Restoration in Tropical and Subtropical Forests

  • 摘要: 稀有物種是熱帶亞熱帶森林生態系統中物種共存與維持生物多樣性的重要類群,但對稀有物種在維持森林物種多樣性的調控機制及其在生態修復中的作用研究較少。本研究在梳理和分析相關研究的基礎上,結合海南尖峰嶺國家級森林生態站的長期監測研究成果,提出了熱帶亞熱帶森林自然恢復的“稀有物種調控機制”基本理論框架,探討其在我國熱帶亞熱帶森林生態修復中的應用原則。
  • 圖  1  不同采伐干擾方式和恢復時間的物種多度分布曲線

    Figure  1.  Species abundance distribution curves among forests with different disturbance types and recovery times

    注:本圖是基于先前研究(Xu et al., 2015a)重新繪制。This figure was revised from Xu et al., 2015a.

    圖  2  物種間分布范圍的關聯矩陣?。╝)森林群落中稀有物種和常見物種在生境利用上分離 ;(b)稀有物種在土壤有效磷高分布區域呈現的3個分布熱點

    Figure  2.  Correlation matrix among species distributions along range sizes (a) Rare species and common species utilized different habitats; (b) Rare species showed three distribution hotspots along the soil with available phosphorus gradients

    注:本圖是基于先前研究(Xu et al., 2015b)重新繪制。This figure is revised from Xu et al., 2015b.

    圖  3  森林中稀有物種豆科樹木的密度效應

    Figure  3.  The neighbor effects of seven leguminous species

    注:本圖是基于先前研究(Xu et al., 2019)重新繪制。This figure is revised from Xu et al., 2019.

    圖  4  AOA驅動的硝化作用和反硝化菌介導的硝態氮還原作用?。╝)AOA和反硝化菌是影響森林土壤氮有效性的關鍵微生物類群;(b)土壤、植被、地形和空間因子對熱帶亞熱帶天然次生林土壤AOA群落結構變異的解釋力度及差異

    amoA, 氨單加氧酶的α亞基; hao, 羥胺氧化還原酶; narG, napA, 硝酸還原酶亞基; nrfA, nirK, nirS, 亞硝酸還原酶亞基; nor, 一氧化氮還原酶; nosZ, 氧化亞氮還原酶亞基; nifH, 固氮酶亞基; hzsB, 肼合成酶亞基。amoA, α-subunit of ammonia monooxygenase; hao, hydroxyamine oxidoreductase; narG, napA, subunits of nitrate reductase; nrfA, nirK, nirS, subunits of nitrite reductase; nor, nitric oxide reductase; nosZ, subunit of nitrous oxide reductase; nifH, subunit of nitrogenase; hzsB,subunit of hydrazine synthas.

    Figure  4.  The nitrification processes driving by AOA and denitrification processes driving by denitrifiers (a) AOA and denitrifiers are key microorganisms in affecting forest soil N availability; (b) The amount of AOA community structure variations in tropical and subtropical natural secondary forests were affected by soil, vegetation, topographical and spatial variables

    注:本圖是基于先前研究(Chen et al., 2015; 陳潔等,2020)重新繪制。This figure is revised from authors' published papers (Chen et al., 2015; 陳潔等,2020).

    圖  5  低磷和高磷土壤中微生物的生物量碳、氮、磷周轉速率(a-f) ,以及土壤微生物的生物量磷循環“維持模式、生長/死亡模式”與植物生長的關系(g)

    Figure  5.  Turnover rates of soil microbial biomass C, N and P (a-f), and relationships of plant growth with microbial biomass P turnover in “Maintenance” and “Growth/Death” mode, respectively (g)

    注:本圖是基于先前研究(Chen et al., 2019c)重新繪制。This figure is revised from Chen et al., 2019c.

    圖  6  熱帶森林不同干擾強度和恢復階段的土壤真菌網絡結構及其參數?。╝)原始林;(b)擇伐后自然恢復形成的次生林; (c)皆伐后自然恢復形成的次生林

    Figure  6.  Soil fungal network structure and related perimeters in tropical forests (a) Primary forest; (b) naturally regenerated secondary forest after selective logging; (c) naturally regenerated secondary forest after clear cutting

    注:本圖是基于先前研究(Chen et al., 2019d)重新繪制。This figure is revised from Chen et al., 2019d.

    <p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"></p>
    <output id="3zz5p"></output><video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <output id="3zz5p"></output>
    <video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

    <video id="3zz5p"><p id="3zz5p"></p></video>

    <video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

    <noframes id="3zz5p"><p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <p id="3zz5p"></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"><delect id="3zz5p"></delect></p>

    <video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
    <p id="3zz5p"></p>

    <delect id="3zz5p"></delect>
    屌“啊……慢点…肏
  • [1] 鮑顯誠, 1983. 《稀有物種保護的生物學問題》一書簡介[J]. 生態學報, 3(4): 375-376.
    [2] 曹洪麟, 吳林芳, 王志高, 等, 2013. 鼎湖山南亞熱帶森林: 樹種及其分布格局[M]. 北京: 中國林業出版社.
    [3] 陳潔, 駱土壽, 周璋, 等, 2020. 氮沉降對熱帶亞熱帶森林土壤氮循環微生物過程的影響研究進展[J]. 生態學報, 40(23): 8528-8538.
    [4] 陳斯, 2017. 山亞熱帶常綠落葉闊葉混交林群落結構與物種多樣性[D]. 恩施: 湖北民族學院.
    [5] 國家林業和草原局, 2019. 中國森林資源報告(2014-2018)[M]. 北京: 中國林業出版社. 131-132.
    [6] 何春梅, 劉潤清, 楊治春, 等, 2021. 秦嶺皇冠暖溫性落葉闊葉林物種組成與群落結構[J]. 生態學報, 32(8): 2737-2744.
    [7] 李意德, 許涵, 駱土壽, 等, 2012. 生態系統定位觀測與研究數據集·森林生態系統卷: 海南尖峰嶺站(生物物種數據集)[M]. 北京: 中國農業出版社.
    [8] 梁棟棟, 彭杰, 高改利, 等, 2020. 鷂落坪落葉闊葉林薔薇科主要樹種的空間分布格局及種間關聯性[J]. 生物多樣性. 28(8): 1008-1017.
    [9] 繆紳裕, 黃金玲, 劉闖, 2020. 廣東南嶺國家公園植物多樣性及其保護價值[J]. 廣東園林, 42(5): 8-11.
    [10] 盤李軍, 何增麗, 冼偉光, 等, 2021. 云勇森林公園杉木生態公益林改造后群落物種組成[J]. 林業與環境科學, 37(3): 68-74.
    [11] 秦運芝, 張佳鑫, 劉檢明, 等, 2018. 湖南八大公山25 ha常綠落葉闊葉混交林動態監測樣地群落組成與空間結構[J]. 生物多樣性, 6(9): 1016-1022. doi:  10.17520/biods.2018074
    [12] 施國杉, 劉峰, 陳典, 等, 2021. 云南納板河熱帶季節雨林20 ha動態監測樣地的樹種組成與群落分類[J]. 生物多樣性. 29(1): 10-20.
    [13] 王甜, 2013. 海南野生植物保護法律制度研究[D]. ??? 海南大學.
    [14] 王艷紅, 李帥鋒, 郎學東, 等, 2020. 地形異質性對云南普洱季風常綠闊葉林物種多樣性的影響[J]. 植物生態學報, 44(10): 1015-1027. doi:  10.17521/cjpe.2020.0148
    [15] 溫韓東, 林露湘, 楊潔, 等, 2018. 云南哀牢山中山濕性常綠闊葉林20 hm2動態樣地的物種組成與群落結構[J]. 植物生態學報, 42(4): 419-429. doi:  10.17521/cjpe.2017.0272
    [16] 謝峰淋, 周全, 史航, 等, 2019. 秦嶺落葉闊葉林25 ha森林動態監測樣地物種組成與群落特征[J]. 生物多樣性, 27(4): 439-448. doi:  10.17520/biods.2018326
    [17] 許涵, 李意德, 林明獻, 等, 2015a. 海南尖峰嶺熱帶山地雨林60 ha動態監測樣地群落結構特征[J]. 生物多樣性, 23(2): 192-201.
    [18] 許涵, 李意德, 駱土壽, 等, 2015b. 海南尖峰嶺熱帶山地雨林: 群落特征、樹種及其分布格局[M]. 北京: 中國林業出版社, 41-42.
    [19] 楊淑華, 王臺, 錢前, 等, 2016. 2015年中國植物科學若干領域重要研究進展[J]. 植物學報, 51: 416-472. doi:  10.11983/CBB16160
    [20] 姚良錦, 姚蘭, 易詠梅, 等, 2017. 湖北七姊妹山亞熱帶常綠落葉闊葉混交林的物種組成和群落結構[J]. 生物多樣性, 25(3): 275-284. doi:  10.17520/biods.2016180
    [21] 苑虎, 張殷波, 覃海, 等, 2009. 中國國家重點保護野生植物的就地保護現狀[J]. 生物多樣性, 17(3): 280-287.
    [22] António M, Luís C M, Francisco D, 2015. Lower within-community variance of negative density dependence increases forest diversity[J]. PLoS ONE, 10(5): e0127260. doi:  10.1371/journal.pone.0127260
    [23] Benone N L, Soares B E, Lobato C M C, et al, (2020-09-17)[2021-08-09]. How modified landscapes filter rare species and modulate the regional pool of ecological traits?[J/OL]. Hydrobiologia. https://doi.org/10.1007/s10750-020-04405-9.
    [24] Betts J, Richard P Y, Craig H-T, et al, 2020. A framework for evaluating the impact of the IUCN Red List of threatened species[J]. Conservation Biology, 34(3): 632-643. doi:  10.1111/cobi.13454
    [25] Bever J D, 1994. Feedback between plants and their soil communities in an old field community[J]. Ecology, 75: 1965-1977. doi:  10.2307/1941601
    [26] Bousfield C G, Cerullo G R, Massam M R, et al, 2020. Chapter One - Protecting environmental and socio-economic values of selectively logged tropical forests in the Anthropocene[M]// Dumbrell A J, Turner E C, Fayle T M. Advances in Ecological Research. London: Academic Press, 62: 1-52.
    [27] Butler R, (2019-04-01)[2021-08-09]. Why are Rainforests so Diverse? [EB/OL]. https://rainforests.mongabay.com/03-diversity-of-rainforests.html.
    [28] Cao M, Zhu H, Wang H, et al, 2008. Xishuangbanna Tropical Seasonal Rainforest Dynamics Plot: Tree Distribution Maps, Diameter Tables and Species Documentation [M]. Kunming: Yunnan Science and Technology Press.
    [29] Chen J, Chazdon R L, Swenson N, et al, 2021b. Drivers of soil microbial community assembly during recovery from selective logging and clear cutting[J]. Journal of Applied Ecology, 58: 2231-2242. doi:  10.1111/1365-2664.13976
    [30] Chen J, Feng K, Hannula S E, et al, 2021a. Interkingdom plant-microbial ecological networks under selective and clear cutting of tropical rainforest[J]. Forest Ecology and Management, 491: 119182. doi:  10.1016/j.foreco.2021.119182
    [31] Chen J, Li J J, Shen W J, et al, 2019b. The structure and species co-occurrence networks of soil denitrifying bacterial communities differ between a coniferous and a broadleaved forests[J]. Microorganisms, 7(9): 361. doi:  10.3390/microorganisms7090361
    [32] Chen J, Rui Y C, Zhou X, et al, 2016. Determinants of the biodiversity patterns of ammonia oxidizing archaea community in two contrasting forest stands[J]. Journal of Soils and Sediments, 16: 878-888. doi:  10.1007/s11368-015-1302-4
    [33] Chen J, Seven Y, Zilla T, et al, 2019c. Microbial C: N: P stoichiometry and turnover depend on nutrients availability in soil: A 14C, 15N and 33P triple labelling study[J]. Soil Biology and Biochemistry, 131: 206-216. doi:  10.1016/j.soilbio.2019.01.017
    [34] Chen J, Shen W J, Xu H, et al, 2019a. The composition of nitrogen-fixing microorganisms Correlates with Soil Nitrogen Content during Reforestation: A Comparison between Legume and Non-legume Plantations[J]. Frontiers in Microbiology, 10: 508. doi:  10.3389/fmicb.2019.00508
    [35] Chen J, Xu H, He D, et al, 2019d. Historical logging alters soil fungal community composition and network in a tropical rainforest [J]. Forest Ecology and Management, 433: 228-239.
    [36] Chen J, Zhang H, Liu W, et al, 2015. Spatial distribution patterns of ammonia-oxidizing archaea abundance in subtropical forests at early and late successional stages[J]. Scientific Reports, 5(1): 16587. doi:  10.1038/srep16587
    [37] Chen Y, Wu Y, Chen W, et al, 2020. Application of a Negative Multinomial Model Gives Insight into Rarity-Area Relationships[J]. Forests, 11(5): f11050571.
    [38] Cherniavskih V I, Pravdin V G, Kharlamova I A, et al, 2020. Prospects for the use of the microbiological preparations for the reproduction of rare species of tree-shrub vegetation of the south of the central Russian upland[J]. Plant Cell Biotechnology and Molecular Biology, 21(15/16): 142-149.
    [39] Chiarucci A, 2012. Estimating species richness: still a long way off![J]. Journal of Vegetation Science, 23(6): 1003-1005.
    [40] CITES (The Convention on International Trade in Endangered Species of Wild Fauna and Flora), (2020-05-28)[2021-08-09]. Checklist of CITES species[EB/OL]. http://checklist.cites.org/.
    [41] Cody M L, 1986. Structural niches in plant communities[M]//J. Diamond. Community Ecology. New York: Harper & Row Publishers, 381-405.
    [42] Connell J, 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees[M]//Boer P J, Gradwell G R. Dynamics of Populations. Wageningen, The Netherlands: Centre for Agricultural Publishing and Documentation, 298-312.
    [43] Crawford K M, Bauer J T, Comita L S, et al, 2019. When and where plant-soil feedback may promote plant coexistence: a meta-analysis[J]. Ecology Letters, 22(8): 1274-1284. doi:  10.1111/ele.13278
    [44] Dai Z, Liu G, Chen H, et al, 2019. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems[J]. The ISME Journal, 14: 757-770.
    [45] Deng Y, Jiang Y H, Yang Y, et al, 2012. Molecular ecological network analyses[J]. BMC Bioinformatics, 13(1): 113. doi:  10.1186/1471-2105-13-113
    [46] Dimson M, Gillespie T W, 2020. Trends in active restoration of tropical dry forest: Methods, metrics, and outcomes[J]. Forest Ecology and Management, 467: 118150. doi:  10.1016/j.foreco.2020.118150
    [47] Elizabeth K, Koen H, Marijn B, et al, 2019. Large-sized rare tree species contribute disproportionately to functional diversity in resource acquisition in African tropical forest[J]. Ecology and Evolution, 9(8): 4349-4361. doi:  10.1002/ece3.4836
    [48] Enquist B J, Feng X, Boyle B, et al, 2019. The commonness of rarity: global and future distribution of rarity across land plants[J]. Science Advances, 5: eaaz0414. doi:  10.1126/sciadv.aaz0414
    [49] Everton A M, 2021. An index for assessing the rare species of a community[J]. Ecological Indicators, 124: 107424.
    [50] Fernanda C S, Kyle D G, Oliver P L, et al, 2019. Evolutionary diversity is associated with wood productivity in Amazonian forests[J]. Nature Ecology & Evolution, 3(12): 1754-1761.
    [51] Gause G F, 1934. The Struggle for Existence[M]. Baltimore: Williams and Wilkins.
    [52] Ghazoul J, Chazdon R, 2017. Degradation and recovery in changing forest landscapes: a multiscale conceptual framework[J]. Annual Review of Environment and Resources, 42: 161-188. doi:  10.1146/annurev-environ-102016-060736
    [53] Hubbell S P, Foster R B, 1986. Canopy gaps and the dynamics of a neotropical forest[M]//Crawley M J. Plant Ecology. Oxford, UK: Blackwell, 77-96.
    [54] IUCN (International Union for Conservation of Nature), 2017[2021-08-25]. IUCN Red List of Threatened Species[EB/OL]. http://www.iucnredlist.org/.
    [55] James E M W, Venter O, Lee J, et al, 2018. Protect the last of the wild[J]. Nature, 563(7729): 27-30. doi:  10.1038/d41586-018-07183-6
    [56] Janzen D H, 1970. Herbivores and the number of tree species in tropical forests[J]. The American Naturalist, 104: 501-528. doi:  10.1086/282687
    [57] Jones E L, Oburger E, 2011. Solubilization of Phosphorus by soil microorganisms[M]//Bunemann E K, Oberson A, Frossard E. Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Berlin, Heidelberg: Springer, 169-198.
    [58] Kardol P, Bezemer T M, Putten V D, 2006. Temporal variation in plant-soil feedback controls succession[J]. Ecology Letters, 2006(9): 1080-1088.
    [59] Lapuente J, Ouattara A, K?ster P C, et al, 2020. Status and distribution of Comoé Chimpanzees: combined use of transects and camera traps to quantify a low-density population in savanna-forest mosaic[J]. Primates, 61(5): 647-659. doi:  10.1007/s10329-020-00816-3
    [60] Laughlin D C, Messier J, 2015. Fitness of multidimensional phenotypes in dynamic adaptive landscapes[J]. Trends in Ecology & Evolution, 30: 487-496.
    [61] Laughlin D C, Strahan R T, Adler P B, et al, 2018. Survival rates indicate that correlations between community-weighted mean traits and environments can be unreliable estimates of the adaptive value of traits[J]. Ecology Letters, 21(3): 411-421. doi:  10.1111/ele.12914
    [62] Laura S K, Raimondo C, Alfredo T-N, 2021. Restoring commercial timber species through silvicultural patch clear-cuts and natural regeneration in Mexico’s Maya Forest: Composition and growth 11 years after three treatments[J]. Forest Ecology and Management, 493: 119206. doi:  10.1016/j.foreco.2021.119206
    [63] Leit?o R P, Zuanon J, Villéger S, et al, 2016. Rare species contribute disproportionately to the functional structure of species assemblages[J]. Proceedings of the Royal Society B: Biological Sciences, 283: 20160084. doi:  10.1098/rspb.2016.0084
    [64] Levy-Booth D J, Prescott C E, Grayston S J, 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems[J]. Soil Biology & Biochemistry, 75: 11-25.
    [65] Logue J B, Mouquet N, Peter H, et al, 2011. Empirical approaches to metacommunities: a review and comparison with theory[J]. Trends in Ecology & Evolution, 26: 482-491.
    [66] Louche J, Ali M A, Cloutier-Hurteau B, et al, 2010. Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols[J]. FEMS Microbiology Ecology, 73: 323-335.
    [67] Lyons K G, Schwartz M W, 2001. Rare species loss alters ecosystem function-invasion resistance[J]. Ecology Letters, 4(4): 358-365.
    [68] Lu M, He F, 2017. Estimating regional species richness: The case of China's vascular plant species[J]. Global Ecology and Biogeography. 26: 835- 845.
    [69] Maron J L, Smith A L, Ortega Y K, et al, 2016. Negative plant‐soil feedbacks increase with plant abundance, and are unchanged by competition[J]. Ecology, 97(8): 2055-2063. doi:  10.1002/ecy.1431
    [70] McGill B J, Etienne R S, Gray J S, et al, 2007. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework[J]. Ecology Letters, 10: 995-1015. doi:  10.1111/j.1461-0248.2007.01094.x
    [71] Miao N, Xu H, Moermond T, et al, 2018. Density-dependent and distance-dependent effects in a 60-ha tropical mountain rain forest in the Jianfengling mountains, Hainan Island, China: Spatial pattern analysis[J]. Forest Ecology and Management, 429: 226-232.
    [72] Mouillot D, Bellwood D R, Baraloto C, et al, 2013. Rare species support vulnerable functions in high-diversity ecosystems[J]. PLoS Biology, 11(5): e1001569. doi:  10.1371/journal.pbio.1001569
    [73] Ngo T L, H?lscher D, 2014. The Fate of Five Rare Tree Species after Logging in a Tropical Limestone Forest (Xuan Son National Park, northern Vietnam)[J]. Tropical Conservation Science, 7(2): 326-341. doi:  10.1177/194008291400700211
    [74] Pastore G, Kernchen S, Spohn M, 2020. Microbial solubilization of silicon and phosphorus from bedrock in relation to abundance of phosphorus-solubilizing bacteria in temperate forest soils[J]. Soil Biology and Biochemistry, 151: 108050. doi:  10.1016/j.soilbio.2020.108050
    [75] Preston F W, 1948. The commonness, and rarity, of species[J]. Ecology, 29: 254-283. doi:  10.2307/1930989
    [76] Preston F W, 1962. The canonical distribution of commonness and rarity: Part I[J]. Ecology, 43: 185. doi:  10.2307/1931976
    [77] Putten V W H, Dijk V C, Troelstra S R, 1988. Biotic soil factors affecting the growth and development of Ammophila arenaria[J]. Oecologia, 76: 313-320. doi:  10.1007/BF00379970
    [78] Rabinowitz D. 1981. Seven forms of rarity. The Biological Aspects of Rare Plants Conservation, 205-217.
    [79] Sarah M-N, Inés I, 2012. Tree range expansion may be enhanced by escape from negative plant-soil feedbacks[J]. Ecology, 93(12): 2637-2649. doi:  10.1890/11-2281.1
    [80] Schroeder J W, Martin J T, Angulo D F, et al, 2018. Community composition and diversity of Neotropical root-associated fungi in common and rare trees[J]. Biotropica, 50(4): 694-703. doi:  10.1111/btp.12553
    [81] Shipley B, 2007. Comparative plant ecology as a tool for integrating across scales[J]. Annals of Botany, 99: 965-966. doi:  10.1093/aob/mcm039
    [82] Stoel V D C D, Putten V W H, Duyts H, 2002. Development of a negative plant–soil feedback in the expansion zone of the clonal grass Ammophila arenaria following root formation and nematode colonization[J]. Journal of Ecology, 90(6): 978-988. doi:  10.1046/j.1365-2745.2002.00727.x
    [83] Stump S M, Comita L S, 2018. Interspecific variation in conspecific negative density dependence can make species less likely to coexist[J]. Ecology Letters, 21(10): 1541-1551. doi:  10.1111/ele.13135
    [84] Terborgh J, 2012. Enemies maintain hyperdiverse tropical forests[J]. The American Naturalist, 179(3): 303-314.
    [85] Tilman D, 1982. Resource Competition and Community Structure[M]. Princeton: Princeton University Press.
    [86] Vitousek P M, Porder S, Houlton B Z, et al, 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions[J]. Ecological Applications, 20: 5-15. doi:  10.1890/08-0127.1
    [87] Walker J K M, Cohen H, Higgins L M, et al, 2014. Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis[J]. New phytologist, 202: 287-296. doi:  10.1111/nph.12638
    [88] Wilson E O, 1992. The Diversity of Life[M]. Cambridge, Mass: Belknap Press.
    [89] Xu H, Liu S R, Li Y D, et al, 2012. Assessing non-parametric and area-based methods for estimating regional species richness[J]. Journal of Vegetation Science, 23(6): 1006-1012. doi:  10.1111/j.1654-1103.2012.01423.x
    [90] Xu H, Li Y D, Liu S R, et al, 2015a. Partial recovery of a tropical rain forest a half century after clear-cut and selective logging[J]. Journal of Applied Ecology, 52(4): 1044-1052. doi:  10.1111/1365-2664.12448
    [91] Xu H, Detto M, Fang S Q, et al, 2015b. Habitat hotspots of common and rare tropical species along climatic and edaphic gradients[J]. Journal of Ecology, 103(5): 1325-1333. doi:  10.1111/1365-2745.12442
    [92] Xu H, Detto M, Li Y P, et al, 2019. Do N-fixing legumes promote neighbor diversity in the tropics[J]. Journal of Ecology, 107(1): 229-239. doi:  10.1111/1365-2745.13017
    [93] Xu H, Matteo D, Fang S Q, et al, 2020. Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests[J]. Communications Biology, 3: 317. doi:  10.1038/s42003-020-1041-y
    [94] Yao J, Huang J, Ding Y, et al, 2021. Ecological uniqueness of species assemblages and their determinants in forest communities[J]. Diversity and Distributions, 27: 454-462. doi:  10.1111/ddi.13205
    [95] Zhang L M, Hu H W, Shen J P, et al, 2011. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal, 6(5): 1032-1045.
  • 加載中
圖(6)
計量
  • 文章訪問數:  780
  • HTML全文瀏覽量:  288
  • PDF下載量:  190
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-09
  • 錄用日期:  2021-09-24
  • 網絡出版日期:  2021-10-19
  • 刊出日期:  2021-10-30

目錄

    /

    返回文章
    返回