<p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"></p>
<output id="3zz5p"></output><video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<p id="3zz5p"></p>
<p id="3zz5p"></p>

<output id="3zz5p"></output>
<video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

<video id="3zz5p"><p id="3zz5p"></p></video>

<video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

<noframes id="3zz5p"><p id="3zz5p"></p>
<p id="3zz5p"></p>

<p id="3zz5p"></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"><delect id="3zz5p"></delect></p>

<video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
<p id="3zz5p"></p>

<delect id="3zz5p"></delect>

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

碳氫氧穩定同位素在陸地生態系統植物水分利用研究中的應用

徐慶 任冉冉 張蓓蓓 左海軍 高德強

徐慶, 任冉冉, 張蓓蓓, 左海軍, 高德強. 碳氫氧穩定同位素在陸地生態系統植物水分利用研究中的應用[J]. 陸地生態系統與保護學報, 2022, 2(1): 73-81. doi: 10.12356/j.2096-8884.2021-0022
引用本文: 徐慶, 任冉冉, 張蓓蓓, 左海軍, 高德強. 碳氫氧穩定同位素在陸地生態系統植物水分利用研究中的應用[J]. 陸地生態系統與保護學報, 2022, 2(1): 73-81. doi: 10.12356/j.2096-8884.2021-0022
Qing XU, Ranran REN, Beibei ZHANG, Haijun ZUO, Deqiang GAO. Plant Water Uptake in Terrestrial Ecosystems Based on Carbon, Hydrogen and Oxygen Stable Isotopes: A Review[J]. Terrestrial Ecosystem and Conservation, 2022, 2(1): 73-81. doi: 10.12356/j.2096-8884.2021-0022
Citation: Qing XU, Ranran REN, Beibei ZHANG, Haijun ZUO, Deqiang GAO. Plant Water Uptake in Terrestrial Ecosystems Based on Carbon, Hydrogen and Oxygen Stable Isotopes: A Review[J]. Terrestrial Ecosystem and Conservation, 2022, 2(1): 73-81. doi: 10.12356/j.2096-8884.2021-0022

碳氫氧穩定同位素在陸地生態系統植物水分利用研究中的應用

doi: 10.12356/j.2096-8884.2021-0022
基金項目: 國家自然科學基金(31870716);中央級公益性科研院所基本科研業務費專項資金重點項目(CAFYBB2021ZE002)
詳細信息
    作者簡介:

    徐慶:E-mail: xuqing@caf.ac.cn

    通訊作者:

    E-mail: xuqing@caf.ac.cn

  • 中圖分類號: Q948.11

Plant Water Uptake in Terrestrial Ecosystems Based on Carbon, Hydrogen and Oxygen Stable Isotopes: A Review

  • 摘要: 水分是影響陸地生態系統植物生長、分布及其對生境適應性的主要因素。在不同陸地生態系統中,非生物環境及植物群落組成的不同導致各系統中植物水分利用格局存在差異,尤其在全球氣候變化背景下,降水格局的改變增加了不同陸地生態系統間植物水分利用格局的差異。然而,當前對不同陸地生態系統植物水分利用過程及影響機制缺乏系統和全面的總結。因此,本文系統梳理了碳氫氧穩定同位素技術在森林、濕地、荒漠、草原、林草復合、農田、城市等陸地生態系統植物水分利用策略研究中的應用,分析了不同生態類型植被在氣候變化下的水分利用機制,展望了穩定同位素技術在量化植物水分利用研究中的前景與發展趨勢,為揭示植物對不同陸地生境變化的生理生態適應機理、闡明植物在陸地生態系統中碳水平衡的關系等具有重要意義。
  • [1] 陳小麗, 陳亞寧, 陳亞鵬, 2014. 黑河下游荒漠河岸林植物水分利用關系研究[J]. 中國生態農業學報, 22(8): 972-979.
    [2] 刁浩宇, 王安志, 袁鳳輝, 等, 2019. 長白山紅松年輪碳同位素與凈初級生產力的關系[J]. 應用生態學報, 30(10): 3327-3335.
    [3] 郭飛, 高磊, 馬娟娟, 2019. 基于氫氧穩定同位素的矮砧蘋果樹根系吸水深度研究[J]. 節水灌溉, (6): 10-13.
    [4] 蔣有緒, 2018-11-16 [2021-10-13]. 積極發展草地科學的理論與實踐研究[N/OL]. 中國綠色時報(第03版): 科教. http://www.greentimes.com/greentimepaper/html/2018-11/16/content_3327297.htm.
    [5] 劉飛, 劉攀, 曹銘, 等, 2020. 穩定同位素技術在植物水分關系研究中的應用綜述[J]. 生態科學, 39(6): 224-232.
    [6] 呂婷, 趙西寧, 高曉東, 等, 2017. 黃土丘陵區典型天然灌叢和人工灌叢優勢植物土壤水分利用策略[J]. 植物生態學報, 41(2): 175-185.
    [7] 史曉亮, 吳夢月, 張娜, 2020. 中國典型陸地生態系統水分利用效率及其對氣候的響應[J]. 農業工程學報, 36(9): 152-159.
    [8] 田金園, 刁浩宇, 袁鳳輝, 等, 2021. 長白山闊葉紅松林演替序列水分利用效率特征[J]. 應用生態學報, 32(4): 1221-1229.
    [9] 王鵬, 宋獻方, 袁瑞強, 等, 2013. 基于氫氧穩定同位素的華北農田夏玉米耗水規律研究[J]. 自然資源學報, 28(3): 481-491.
    [10] 魏特, 王力, 楊國敏, 2017. 六道溝流域不同冠層小葉楊光合特性及水分利用效率研究[J]. 西北植物學報, 37(11): 2247-2255.
    [11] 徐慶, 2020. 穩定同位素森林水文[M]. 北京: 中國林業出版社.
    [12] 徐慶, 左海軍, 高德強, 等, 2021. 碳氫氧穩定同位素在林草復合系統水循環研究中的應用[J]. 陸地生態系統與保護學報, 1(1): 82-89.
    [13] 楊國敏, 王愛, 王力, 2018. 六道溝流域2種典型灌木不同季節水分來源及利用效率[J]. 西北植物學報, 38(1): 140-149.
    [14] 袁亞鵬, 趙陽, 趙傳燕, 等, 2015. 黑河下游不同生境胡楊(Populus euphratica)葉片碳同位素組成特征[J]. 中國沙漠, 35(6): 1505-1511.
    [15] 趙慧穎, 田寶星, 宮麗娟, 等, 2017. 近308年來大興安嶺北部森林植被氣候生產潛力及其對氣候變化的響應[J]. 生態學報, 37(6): 1900-1911.
    [16] 周盼盼, 張明軍, 王圣杰, 等, 2016. 蘭州城區綠化植物穩定氫氧同位素特征[J]. 生態學雜志, 35(11): 2942-2951.
    [17] Anderson J T, 2016. Plant fitness in a rapidly changing world[J]. New Phytologist, 210(1): 81-87.
    [18] Anderson J T, Song B H, 2020. Plant adaptation to climate change: where are we?[J]. Journal of Systematics and Evolution, 58(5): 533-545.
    [19] Barbeta A, Mejía-Chang M, Ogaya R, et al, 2015. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest[J]. Global Change Biology, 21(3): 1213-1225.
    [20] Belmecheri S, Maxwell R S, Taylor A H, et al, 2021. Precipitation alters the CO2 effect on water-use efficiency of temperate forests[J]. Global Change Biology, 27(8): 1560-1571.
    [21] Bijoor N S, McCarthy H R, Zhang D, et al, 2012. Water sources of urban trees in the Los Angeles metropolitan area[J]. Urban Ecosystems 15(1): 195-214.
    [22] Bugna G C, Grace J M, Hsieh Y P, 2020. Sensitivity of using stable water isotopic tracers to study the hydrology of isolated wetlands in North Florida[J]. Journal of Hydrology, 580: 124321. doi:  10.1016/j.jhydrol.2019.124321
    [23] Carmichael M J, White J C, Smith W K, 2018. Water source utilization in Taxodium distichum (L.) Rich. (baldcypress) over the course of a growing season in a restored coastal freshwater wetland vulnerable to saltwater incursion[J]. Castanea, 83(2): 272-287.
    [24] Chen J, Xu Q, Gao D, et al, 2017. Differential water use strategies among selected rare and endangered species in West Ordos Desert of China[J]. Journal of Plant Ecology, 10(4): 660-669.
    [25] Chen Y, Helliker B R, Tang X, et al, 2020. Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water[J]. Proceedings of the National Academy of Sciences, 117(52): 33345-33350.
    [26] Colón-Rivera R J, Feagin R A, West J B, et al, 2014. Hydrological modification, saltwater intrusion, and tree water use of a Pterocarpus officinalis swamp in Puerto Rico[J]. Estuarine, Coastal and Shelf Science, 147: 156-167.
    [27] Compagnoni A, Levin S, Childs D Z, et al, 2021. Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time[J]. Nature Communications, 12(1): 1824.
    [28] Corbin J D, Thomsen M A, Dawson T E, et al, 2005. Summer water use by California coastal prairie grasses: fog, drought, and community composition[J]. Oecologia, 145(4): 511-521.
    [29] Dawson T E, Ehleringer J R, 1991. Streamside trees that do not use stream water[J]. Nature, 350: 335-337.
    [30] De Deurwaerder H P T, Visser M D, Detto M, et al, 2020. Causes and consequences of pronounced variation in the isotope composition of plant xylem water[J]. Biogeosciences, 17(19): 4853-4870.
    [31] Di Matteo G, Nardi P, Fabbio G, 2017. On the use of stable carbon isotopes to detect the physiological impact of forest management: the case of Mediterranean coppice woodland[J]. Forest Ecology and Management, 389: 158-166.
    [32] Du B, Zheng J, Ji H, et al, 2021. Stable carbon isotope used to estimate water use efficiency can effectively indicate seasonal variation in leaf stoichiometry[J]. Ecological Indicators, 121: 107250.
    [33] Ellsworth P Z, Cousins A B, 2016. Carbon isotopes and water use efficiency in C4 plants[J]. Current Opinion in Plant Biology, 31: 155-161.
    [34] Ellsworth P Z, Feldman M J, Baxter I, et al, 2020. A genetic link between leaf carbon isotope composition and whole-plant water use efficiency in the C4 grass Setaria[J]. The Plant Journal, 102(6): 1234-1248.
    [35] Farquhar G D, Richards R A, 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes[J]. Australian Journal of Plant Physiology, 11(6): 539-552.
    [36] Gao X, Liu Z, Zhao X, et al, 2018. Extreme natural drought enhances interspecific facilitation in semiarid agroforestry systems[J]. Agriculture, Ecosystems and Environment, 265: 444-453.
    [37] Gei?ler K, Heblack J, Uugulu S, et al, 2019. Partitioning of water between differently sized shrubs and potential groundwater recharge in a semiarid savanna in Namibia[J]. Frontiers in Plant Science, 10: 1411.
    [38] Henschel J R, Wassenaar T D, Kanandjembo A, et al, 2019. Roots point to water sources of Welwitschia mirabilis in a hyperarid desert[J]. Ecohydrology, 12(1): e2039.
    [39] Hill A J, Dawson T E, Shelef O, et al, 2015. The role of dew in Negev Desert plants[J]. Oecologia, 178(2): 317-327.
    [40] Hu H, Zhu L, Li H, et al, 2021. Seasonal changes in the water-use strategies of three herbaceous species in a native desert steppe of Ningxia, China[J]. Journal of Arid Land, 13(2): 109-122.
    [41] Hussain M I, El-Keblawy A, Mitterand Tsombou F, 2019. Leaf age, canopy position, and habitat affect the carbon isotope discrimination and water-use efficiency in three C3 Leguminous Prosopis species from a hyper-arid climate[J]. Plants, 8(10): 402.
    [42] Juhlke T R, Van Geldern R, Barth J A C, et al, 2021. Temporal offset between precipitation and water uptake of Mediterranean pine trees varies with elevation and season[J]. Science of the Total Environment, 755: 142539.
    [43] Kuhlemann L M, Tetzlaff D, Smith A, et al, 2021. Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning[J]. Hydrology and Earth System Sciences, 25(2): 927-943.
    [44] Lin G H, Sternberg L S L, 1994. Utilization of surface water by red mangrove (Rhizophora Mangle L.): an isotope study[J]. Bulletin of Marine Science, 54(1): 94-102.
    [45] Liu S B, Chen Y N, Chen Y P, et al, 2015. Use of 2H and 18O stable isotopes to investigate water sources for different ages of Populus euphratica along the lower Heihe River[J]. Ecological Research, 30(4): 581-587.
    [46] Martínez-Sancho E, Dorado-Liñán I, Gutiérrez Merino E, et al, 2018. Increased water-use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits[J]. Global Change Biology, 24(3): 1012-1028.
    [47] Mcdonnell J J, 2014. The two water worlds hypothesis: ecohydrological separation of water between streams and trees?[J]. Wiley Interdisciplinary Reviews: Water, 1(4): 323-329.
    [48] Nehemy M F, Benettin P, Asadollahi M, et al, 2021. Tree water deficit and dynamic source water partitioning[J]. Hydrological Processes, 35(1): e14004.
    [49] Pan Y X, Wang X P, Ma X Z, et al, 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China[J]. Catena, 189: 104499.
    [50] Penna D, Geris J, Hopp L, et al, 2020. Water sources for root water uptake: using stable isotopes of hydrogen and oxygen as a research tool in agricultural and agroforestry systems[J]. Agriculture, Ecosystems & Environment, 291: 106790.
    [51] Pinheiro F M, Nair P K R, 2018. Silvopasture in the Caatinga biome of Brazil: a review of its ecology, management, and development opportunities[J]. Forest Systems, 27(1): eR01S.
    [52] Priyadarshini K V R, Prins H H T, de Bie S, et al, 2016. Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions[J]. Ecohydrology, 9(2): 218-228.
    [53] Qian J, Zheng H, Wang P, et al, 2017. Assessing the ecohydrological separation hypothesis and seasonal variations in water use by Ginkgo biloba L. in a subtropical riparian area[J]. Journal of Hydrology, 553: 486-500.
    [54] Shen Y J, Zhang Z B, Gao L, et al, 2015. Evaluating contribution of soil water to paddy rice by stable isotopes of hydrogen and oxygen[J]. Paddy and Water Environment, 13: 125-133.
    [55] Succarie A, Xu Z, Wang W, et al, 2020. Effects of climate change on tree water use efficiency, nitrogen availability and growth in boreal forest of northern China[J]. Journal of Soils and Sediments, 20(10): 3607-3614.
    [56] Sun S J, He C, Qiu L, et al, 2018. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in Northern China[J]. Agricultural and Forest Meteorology, 252: 39- 48.
    [57] Wadgymar S M, Ogilvie J E, Inouye D W, et al, 2018. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment[J]. New Phytologist, 218(2): 517-529.
    [58] Wang J, Fu B, Wang L, et al, 2020. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 288: 108020.
    [59] Wang T, Xu Q, Zhang B, et al, 2022. Effects of understory removal and thinning on water uptake patterns in Pinus massoniana Lamb. plantations: evidence from stable isotope analysis[J]. Forest Ecology and Management, 503: 119755.
    [60] Wen X F, Lee X, Sun X M, et al, 2012. Dew water isotopic ratios and their relationships to ecosystem water pools and fluxes in a cropland and a grassland in China[J]. Oecologia, 168(2): 549-561.
    [61] Wu H, Li J, Zhang C, et al, 2018a. Determining root water uptake of two alpine crops in a rainfed cropland in the Qinghai Lake watershed: first assessment using stable isotopes analysis[J]. Field Crops Research, 215: 113-121.
    [62] Wu J, Zeng H, Chen C, et al, 2019a. Can intercropping with the Chinese medicinal herbs change the water use of the aged rubber trees? [J]. Agricultural Water Management, 226: 105803.
    [63] Wu X, Zheng X J, Yin X W, et al, 2019b. Seasonal variation in the groundwater dependency of two dominant woody species in a desert region of Central Asia[J]. Plant and Soil, 444(1/2): 39-55.
    [64] Wu Y, Du T, Wang L, 2021. Isotope signature of maize stem and leaf and investigation of transpiration and water transport[J]. Agricultural Water Management, 247: 106727.
    [65] Wu Y, Du T, Yuan Y, et al, 2018b. Stable isotope measurements show increases in corn water use efficiency under deficit irrigation[J]. Scientific Reports, 8(1): 14113.
    [66] Xu Q, Li H, Chen J, et al, 2011. Water use patterns of three species in subalpine forest, Southwest China: the deuterium isotope approach[J]. Ecohydrology, 4(2): 236-244.
    [67] Xu X, Trugman A T, 2021. Trait-based modeling of terrestrial ecosystems: advances and challenges under global change[J]. Current Climate Change Reports, 7: 1-13.
    [68] Xu Y, Yi Y, Yang X, et al, 2019. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban environment[J]. Water, 11(11): 2287.
    [69] Zhang B, Xu Q, Gao D, et al, 2020. Altered water uptake patterns of Populus deltoides in mixed riparian forest stands[J]. Science of the Total Environment, 706: 135956.
    [70] Zhang Y, Liu L, Liu Y, et al, 2021. Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015[J]. Scientific Reports, 11(1): 4870.
    [71] Zhao Y, Wang L, Knighton J, et al, 2021. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem[J]. Agricultural and Forest Meteorology, 300: 108323.
  • 加載中
計量
  • 文章訪問數:  440
  • HTML全文瀏覽量:  297
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-13
  • 錄用日期:  2022-02-15
  • 網絡出版日期:  2022-03-14
  • 刊出日期:  2022-04-24

目錄

    /

    返回文章
    返回

    <p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"></p>
    <output id="3zz5p"></output><video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <output id="3zz5p"></output>
    <video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

    <video id="3zz5p"><p id="3zz5p"></p></video>

    <video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

    <noframes id="3zz5p"><p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <p id="3zz5p"></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"><delect id="3zz5p"></delect></p>

    <video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
    <p id="3zz5p"></p>

    <delect id="3zz5p"></delect>
    屌“啊……慢点…肏