<p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"></p>
<output id="3zz5p"></output><video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<p id="3zz5p"></p>
<p id="3zz5p"></p>

<output id="3zz5p"></output>
<video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

<video id="3zz5p"><p id="3zz5p"></p></video>

<video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

<noframes id="3zz5p"><p id="3zz5p"></p>
<p id="3zz5p"></p>

<p id="3zz5p"></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"><delect id="3zz5p"></delect></p>

<video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
<p id="3zz5p"></p>

<delect id="3zz5p"></delect>

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

植物葉片水力性狀研究綜述

許庭毓 牛香 王兵

許庭毓, 牛香, 王兵. 植物葉片水力性狀研究綜述[J]. 陸地生態系統與保護學報, 2022, 2(2): 83-91. doi: 10.12356/j.2096-8884.2022-0005
引用本文: 許庭毓, 牛香, 王兵. 植物葉片水力性狀研究綜述[J]. 陸地生態系統與保護學報, 2022, 2(2): 83-91. doi: 10.12356/j.2096-8884.2022-0005
Tingyu Xu, Xiang Niu, Bing Wang. Recent Advances in Plant Leaf Hydraulic Traits[J]. Terrestrial Ecosystem and Conservation, 2022, 2(2): 83-91. doi: 10.12356/j.2096-8884.2022-0005
Citation: Tingyu Xu, Xiang Niu, Bing Wang. Recent Advances in Plant Leaf Hydraulic Traits[J]. Terrestrial Ecosystem and Conservation, 2022, 2(2): 83-91. doi: 10.12356/j.2096-8884.2022-0005

植物葉片水力性狀研究綜述

doi: 10.12356/j.2096-8884.2022-0005
基金項目: 中央級公益性科研院所基本科研業務費專項(CAFYBB2020ZE003,2060503-20-201)
詳細信息
    作者簡介:

    許庭毓:E-mail: 545566961@qq.com

    通訊作者:

    E-mail: niuxiang@caf.ac.cn

  • 中圖分類號: Q945.79

Recent Advances in Plant Leaf Hydraulic Traits

  • 摘要: 葉片是水分傳輸的終端部分,水分在葉片中的傳輸效率限制了整個植株的水分傳輸,而葉片水力性狀可以表征葉片水分傳輸方面的特征。目前針對葉片水力性狀開展了較多研究并取得了一定的成果。文章在簡述葉片水力性狀測定指標、測定方法的基礎上,闡明了影響葉片水力性狀的因素、水力性狀之間的權衡和協調關系以及與光合生理過程的響應關系;重點概述了氣候變化背景下葉片水力性狀的響應機制,并展望了今后的研究重點,以期為進一步了解植物碳水耦合關系提供參考。
  • 表  1  壓力?容積曲線確定的水力性狀

    Table  1.   Leaf hydraulic traits determined by pressure-volume curves

    變量
    Variables
    單位
    Units
     描述
     Description
    意義
    Significance
    ΨTLPMPa ΨP = 0,ΨW = ΨS時對應的點ΨTLP值越負,植物越耐旱。
    Cleafmol·m?2·MPa?1 $\;\;\;{C}_{\text{leaf} } = \dfrac{\mathrm{\Delta }RWC}{\mathrm{\Delta }{\varPsi }_{1} } \times \left(\dfrac{DW}{LA}\right) \times \left(\dfrac{WW}{DW}\right)/{M}$Cleaf值越大,植物越耐旱。
    εMPa$\varepsilon =\dfrac{\mathrm{\Delta }{\varPsi }_{\mathrm{P} } }{\mathrm{\Delta }RW{C} }$細胞壁剛度,ε值越大,植物越耐旱。
    af%ΨW = ?∞時的RWC細胞外含水量,af值越大,植物越耐旱。
    RWCTLP%ΨW = ΨTLP時的RWC細胞開始萎蔫時的葉片相對含水量。RWCTLP值越大,植物越耐旱。
      注:ΨP為壓力勢(MPa);ΨW為葉片水勢(MPa);ΨS滲透勢(MPa);ΔRWC/ΔΨl表示相對含水量(RWC)與水勢的斜率;DW為葉片的干重(g);LA為葉片的面積(m2);WW為葉片的飽和重,即相對含水量為100%時的葉片重量(g);M為水的摩爾質量,即18 g/mol。ΨP is the pressure potential(MPa); ΨW is the leaf water potential(MPa); ΨS is the osmotic potential(MPa); ΔRWC/ΔΨl is the slope of the relative water content (RWC) and the water potential; DW is the dry weight of the leaf (g); LA is the area of the leaf (m2); WW is the saturated weight of the leaf, that is, the leaf weight (g) when the relative water content is 100%; M is the molar mass of water, that is, 18 g/mol.
    下載: 導出CSV

    <p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"></p>
    <output id="3zz5p"></output><video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <output id="3zz5p"></output>
    <video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

    <video id="3zz5p"><p id="3zz5p"></p></video>

    <video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

    <noframes id="3zz5p"><p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <p id="3zz5p"></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"><delect id="3zz5p"></delect></p>

    <video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
    <p id="3zz5p"></p>

    <delect id="3zz5p"></delect>
    屌“啊……慢点…肏
  • [1] 柴寶峰, 李洪建, 王孟本, 2000. 晉西黃土丘陵區若干樹種水分生理及抗旱性量化研究[J]. 植物研究, 20(1): 79-85. doi:  10.3969/j.issn.1673-5102.2000.01.013
    [2] 賀鵬程, 2019. 基于功能性狀探討森林植物對環境變化的響應: 從種群水平到全球尺度[D]. 北京: 中國科學院大學.
    [3] 金鷹, 王傳寬, 2015. 植物葉片水力與經濟性狀權衡關系的研究進展[J]. 植物生態學報, 39(10): 1021-1032. doi:  10.17521/cjpe.2015.0099
    [4] 金鷹, 王傳寬, 2016. 九種不同材性的溫帶樹種葉水力性狀及其權衡關系[J]. 植物生態學報, 40(7): 702-710. doi:  10.17521/cjpe.2016.0064
    [5] 李樂, 曾輝, 郭大立, 2013. 葉脈網絡功能性狀及其生態學意義[J]. 植物生態學報, 37(7): 691-698. doi:  10.3724/SP.J.1258.2013.00072
    [6] 李榮, 姜在民, 張碩新, 等, 2015. 木本植物木質部栓塞脆弱性研究新進展[J]. 植物生態學報, 39(8): 838-848. doi:  10.17521/cjpe.2015.0080
    [7] 李志民, 王傳寬, 羅丹丹, 2017. 興安落葉松葉水力與光合性狀的變異性和相關性[J]. 植物生態學報, 41(11): 1140-1148. doi:  10.17521/cjpe.2017.0049
    [8] 羅麗瑩, 陳楠, 王云龍, 等, 2021. 閩楠葉形態與葉脈網絡性狀關系對城市生長環境的響應[J]. 生態學報, 41(19): 7838-7847. doi:  10.5846/stxb201911282584
    [9] 毛偉, 李玉霖, 張銅會, 等, 2012. 不同尺度生態學中植物葉性狀研究概述[J]. 中國沙漠, 32(1): 33-41.
    [10] 潘瑩萍, 陳亞鵬, 2014. 葉片水力性狀研究進展[J]. 生態學雜志, 33(10): 2834-2841. doi:  10.13292/j.1000-4890.2014.0252
    [11] 任金培, 李俊鵬, 王衛鋒, 等, 2021. 八個樹種葉水力性狀對水分條件的響應及其驅動因素[J]. 植物生態學報, 45(9): 942-951. doi:  10.17521/cjpe.2021.0140.
    [12] 王瑞麗, 于貴瑞, 何念鵬, 等, 2016. 氣孔特征與葉片功能性狀之間關聯性沿海拔梯度的變化規律: 以長白山為例[J]. 生態學報, 36(8): 2175-2184. doi:  10.5846/stxb201411042162
    [13] 王兆國, 王傳寬, 2021. 樹木對二氧化碳濃度升高的生理生態響應[J]. 陸地生態系統與保護學報, 1(2): 39-52. doi:  10.12356/j.2096-8884.2021-0023
    [14] 武維華, 2008. 植物生理學[M]. 2版. 北京: 科學出版社, 57.
    [15] 張亞, 楊石建, 孫梅, 等, 2014. 基部被子植物氣孔性狀與葉脈密度的關聯進化[J]. 植物科學學報, 32(4): 320-328. doi:  10.3724/SP.J.1142.2014.40320
    [16] Aasamaa K, Niinemets ü, S?ber A, 2005. Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny[J]. Tree Physiology, 25(11): 1409-1418. doi:  10.1093/treephys/25.11.1409
    [17] Ali A, Lin S L, He J K, et al, 2019. Climatic water availability is the main limiting factor of biotic attributes across large-scale elevational gradients in tropical forests[J]. Science of the Total Environment, 647: 1211-1221. doi:  10.1016/j.scitotenv.2018.08.072
    [18] Bartlett M K, Scoffoni C, Sack L, 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta‐analysis[J]. Ecology Letters, 15(5): 393-405. doi:  10.1111/j.1461-0248.2012.01751.x
    [19] Blackman C J, Brodribb T J, Jordan G J, 2010. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms[J]. New Phytologist, 188(4): 1113-1123. doi:  10.1111/j.1469-8137.2010.03439.x
    [20] Borghetti M, Gentilesca T, Leonardi S, et al, 2017. Long-term temporal relationships between environmental conditions and xylem functional traits: a meta-analysis across a range of woody species along climatic and nitrogen deposition gradients[J]. Tree Physiology, 37(1): 4-17. doi:  10.1093/treephys/tpw087
    [21] Brodersen C R, McElrone A J, Choat B, et al, 2013. In vivo visualizations of drought-induced embolism spread in Vitis vinifera[J]. Plant Physiology, 161(4): 1820-1829. doi:  10.1104/pp.112.212712
    [22] Brodribb T J, Holbrook N M, 2006. Declining hydraulic efficiency as transpiring leaves desiccate: two types of response[J]. Plant, Cell & Environment, 29(12): 2205-2215. doi:  10.1111/j.1365-3040.2006.01594.x
    [23] Brodribb T J, Holbrook N M, 2003. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits[J]. Plant Physiology, 132(4): 2166-2173. doi:  10.1104/pp.103.023879
    [24] Brodribb T J, Feild T S, Sack L, 2010. Viewing leaf structure and evolution from a hydraulic perspective[J]. Functional Plant Biology, 37(6): 488-498. doi:  10.1071/FP10010
    [25] Brodribb T J, Jordan G J, 2011. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J]. New Phytologist, 192(2): 437-448. doi:  10.1111/j.1469-8137.2011.03795.x
    [26] Brodribb T J, Feild T S, Jordan G J, 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics[J]. Plant Physiology, 144(4): 1890-1898. doi:  10.1104/pp.107.101352
    [27] Brodribb T J, McAdam S A M, Jordan G J, et al, 2014. Conifer species adapt to low-rainfall climates by following one of two divergent pathways[J]. Proceedings of the National Academy of Sciences, 111(40): 14489-14493. doi:  10.1073/pnas.1407930111
    [28] Brodribb T J, Skelton R P, McAdam S A M, et al, 2016. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure[J]. New Phytologist, 209(4): 1403-1409. doi:  10.1111/nph.13846
    [29] Buckley T N, John G P, Scoffoni C, et al, 2015. How does leaf anatomy influence water transport outside the xylem? [J]. Plant Physiology, 168(4): 1616-1635. doi:  10.1104/pp.15.00731
    [30] Bucci S J, Silletta L M C, Garré A, et al, 2019. Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis[J]. Plant, Cell & Environment, 42(5): 1603-1614. doi:  10.1111/pce.13512
    [31] Chen Z C, Zhang Y T, Yuan W J, et al, 2021. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric-anisohydric spectrum[J]. Tree Physiology, 41(9): 1601-1610. doi:  10.1093/treephys/tpab028
    [32] Chen Z C, Li S, Luan J W, et al, 2019. Prediction of temperate broadleaf tree species mortality in arid limestone habitats with stomatal safety margins[J]. Tree Physiology, 39(8): 1428-1437. doi:  10.1093/treephys/tpz045
    [33] Choat B, Brodribb T J, Brodersen C R, et al, 2018. Triggers of tree mortality under drought[J]. Nature, 558: 531-539. doi:  10.1038/s41586-018-0240-x
    [34] Choat B, Jansen S, Brodribb T J, et al, 2012. Global convergence in the vulnerability of forests to drought[J]. Nature, 491: 752-755. doi:  10.1038/nature11688
    [35] Cochard H, Venisse J S, Barigah T S, et al, 2007. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light[J]. Plant Physiology, 143(1): 122-133. doi:  10.1104/pp.106.090092
    [36] Cosme L H M, Schietti J, Costa F R C, et al, 2017. The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest[J]. New Phytologist, 215(1): 113-125. doi:  10.1111/nph.14508
    [37] Cruiziat P, Cochard H, Améglio T, 2002. Hydraulic architecture of trees: main concepts and results[J]. Annals of Forest Science, 59(7): 723-752. doi:  10.1051/forest:2002060
    [38] Cobb R C, Ruthrof K X, Breshears D D, et al, 2017. Ecosystem dynamics and management after forest die-off: a global synthesis with conceptual state-and-transition models[J]. Ecosphere, 8(12): e02034. doi:  10.1002/ecs2.2034
    [39] Dixon H H, Joly J, 1895. On the ascent of sap[J]. Philosophical Transactions of the Royal Society of London B, 186: 563-579. doi:  10.1098/rstb.1895.0012
    [40] Gleason S M, Westoby M, Jansen S, et al, 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species[J]. New Phytologist, 209(1): 123-136. doi:  10.1111/nph.13646
    [41] Goldstein G, Bucci S J, Scholz F G, 2013. Why do trees adjust water relations and hydraulic architecture in response to nutrient availability? [J]. Tree Physiology, 33(3): 238-240. doi:  10.1093/treephys/tpt007
    [42] Hartmann H, Moura C F, Anderegg W R L, et al, 2018. Research frontiers for improving our understanding of drought-induced tree and forest mortality[J]. New Phytologist, 218(1): 15-28. doi:  10.1111/nph.15048
    [43] Jin Y, Wang C K, Zhou Z H, et al, 2016. Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species[J]. Functional Plant Biology, 43(11): 1082-1090. doi:  10.1071/FP16097
    [44] Johnson D M, Meinzer F C, Woodruff D R, et al, 2009. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species[J]. Plant, Cell & Environment, 32(7): 828-836. doi:  10.1111/j.1365-3040.2009.01961.x
    [45] Kardiman R, R?bild A, 2018. Relationship between stomatal density, size and speed of opening in Sumatran rainforest species[J]. Tree Physiology, 38(5): 696-705. doi:  10.1093/treephys/tpx149
    [46] Larter M, Pfautsch S, Domec J C, et al, 2017. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris[J]. New Phytologist, 215(1): 97-112. doi:  10.1111/nph.14545
    [47] Li L, McCormack M L, Ma C, et al, 2015. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecology Letters, 18(9): 899-906. doi:  10.1111/ele.12466
    [48] Liu X R, Liu H, Gleason S M, et al, 2019. Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species[J]. Tree Physiology, 39(10): 1665-1674. doi:  10.1093/treephys/tpz076
    [49] Markesteijn L, Poorter L, Bongers F, et al, 2011. Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance[J]. New Phytologist, 191(2): 480-495. doi:  10.1111/j.1469-8137.2011.03708.x
    [50] McDowell N, Pockman W T, Allen C D, et al, 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? [J]. New Phytologist, 178(4): 719-739. doi:  10.1111/j.1469-8137.2008.02436.x
    [51] Nardini A, Pedà G, Rocca N L, 2012a. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences[J]. New Phytologist, 196: 788-798. doi:  10.1111/j.1469-8137.2012.04294.x
    [52] Nardini A, Pedá G, Salleo S, 2012b. Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure-function relationships of sun and shade leaves[J]. Functional Plant Biology, 39(5): 394-401. doi:  10.1071/FP12020
    [53] Nardini A, Salleo S, Andri S, 2005. Circadian regulation of leaf hydraulic conductance in sunflower (Helianthus annuus L. cv Margot)[J]. Plant, Cell & Environment, 28(6): 750-759. doi:  10.1111/j.1365-3040.2005.01320.x
    [54] Nardini A, Luglio J, 2014. Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes[J]. Functional Ecology, 28(4): 810-818. doi:  10.1111/1365-2435.12246
    [55] Nolf M, Beikircher B, Rosner S, et al, 2015. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions[J]. New Phytologist, 208(2): 625-632. doi:  10.1111/nph.13476
    [56] Pallardy S G, 2008. Physiology of woody plants[M]. 3rd ed. Burlington, MA: Academic Press, 195.
    [57] Pantin F, Monnet F, Jannaud D, et al, 2013. The dual effect of abscisic acid on stomata[J]. New Phytologist, 197(1): 65-72. doi:  10.1111/nph.12013
    [58] Poorter L, van der Sande M T, Arets E J M M, et al, 2017. Biodiversity and climate determine the functioning of Neotropical forests[J]. Global Ecology and Biogeography, 26(12): 1423-1434. doi:  10.1111/geb.12668
    [59] Prentice I C, Dong N, Gleason S M, et al, 2013. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology[J]. Ecology Letters, 17(1): 82-91. doi:  10.1111/ele.12211
    [60] Roth-Nebelsick A, Uhl D, Mosbrugger V, et al, 2001. Evolution and function of leaf venation architecture: a review[J]. Annals of Botany, 87(5): 553-566. doi:  10.1006/anbo.2001.1391
    [61] Sack L, Scoffoni C, 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytologist, 198(4): 983-1000. doi:  10.1111/nph.12253
    [62] Sack L, Holbrook N M, 2006. Leaf hydraulics[J]. Annual Review of Plant Biology, 57: 361-381. doi:  10.1146/annurev.arplant.56.032604.144141
    [63] Sack L, Cowan P D, Jaikumar N, et al, 2003. The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species[J]. Plant, Cell & Environment, 26(6): 1343-1356. doi:  10.1046/j.0016-8025.2003.01058.x
    [64] Sack L, Streeter C M, Holbrook N M, 2004. Hydraulic analysis of water flow through leaves of sugar maple and red oak[J]. Plant Physiology, 134(4): 1824-1833. doi:  10.1104/pp.103.031203
    [65] Sack L, Tyree M T, Holbrook N M, 2005. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees[J]. New Phytologist, 167(2): 403-413. doi:  10.1111/j.1469-8137.2005.01432.x
    [66] Scoffoni C, Albuquerque C, Brodersen C R, et al, 2017a. Outside-xylem vulnerability, not xylem embolism, controls leaf hydraulic decline during dehydration[J]. Plant Physiology, 173(2): 1197-1210. doi:  10.1104/pp.16.01643
    [67] Scoffoni C, Kunkle J, Pasquet-Kok J, et al, 2015. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads[J]. New Phytologist, 207(1): 43-58. doi:  10.1111/nph.13346
    [68] Scoffoni C, Sack L, 2017b. The causes and consequences of leaf hydraulic decline with dehydration[J]. Journal of Experimental Botany, 68(16): 4479-4496. doi:  10.1093/jxb/erx252
    [69] Scoffoni C, Vuong C, Diep S, et al, 2014. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance[J]. Plant Physiology, 164(4): 1772-1788. doi:  10.1104/pp.113.221424
    [70] Skelton R P, West A G, Dawson T E, 2015. Predicting plant vulnerability to drought in biodiverse regions using functional traits[J]. Proceedings of the National Academy of Sciences, 112(18): 5744-5749. doi:  10.1073/pnas.1503376112
    [71] Sperry J S, Hacke U G, Pittermann J, 2006. Size and function in conifer tracheids and angiosperm vessels[J]. American Journal of Botany, 93(10): 1490-1500. doi:  10.3732/ajb.93.10.1490
    [72] Taiz L, Zeiger E, 2010. Plant physiology [M]. 5th ed. Sunderland, Massachusetts: Sinauer Associates Inc., Publishers.
    [73] Trifiló P, Raimondo F, Savi T, et al, 2016. The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance[J]. Journal of Experimental Botany, 67(17): 5029-5039. doi:  10.1093/jxb/erw268
    [74] Villagra M, Campanello P I, Bucci S J, et al, 2013. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species[J]. Tree Physiology, 33(12): 1308-1318. doi:  10.1093/treephys/tpt098
    [75] Watanabe Y, Tobita H, Kitao M, et al, 2008. Effects of elevated CO2 and nitrogen on wood structure related to water transport in seedlings of two deciduous broad-leaved tree species[J]. Trees, 22: 403-411. doi:  10.1007/s00468-007-0201-8
    [76] Way D A, Domec J C, Jackson R B, 2013. Elevated growth temperatures alter hydraulic characteristics in trembling aspen (Populus tremuloides) seedlings: implications for tree drought tolerance[J]. Plant, Cell & Environment, 36(1): 103-115. doi:  10.1111/j.1365-3040.2012.02557.x
    [77] Wheeler J K, Huggett B A, Tofte A N, et al, 2013. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism[J]. Plant, Cell & Environment, 36(11): 1938-1949. doi:  10.1111/pce.12139
    [78] Xiong D L, Flexas J, Yu T T, et al, 2017. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza[J]. New Phytologist, 213(2): 572-583. doi:  10.1111/nph.14186
    [79] Yan C L, Ni M Y, Cao K F, et al, 2020. Leaf hydraulic safety margin and safety-efficiency trade-off across angiosperm woody species[J]. Biology Letters, 16(11): 20200456. doi:  10.1098/rsbl.2020.0456
    [80] Yao G Q, Nie Z F, Turner N C, et al, 2020. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation[J]. New Phytologist, 229(1): 230-244. doi:  10.1111/nph.16845
    [81] Yin Q L, Wang L, Lei M L, et al, 2018. The relationships between leaf economics and hydraulic traits of woody plants depend on water availability[J]. Science of the Total Environment, 621(3): 245-252. doi:  10.1016/j.scitotenv.2017.11.171
    [82] Zhang H X, Li W B, Adams H D, et al, 2018. Responses of woody plant functional traits to nitrogen addition: a meta-analysis of leaf economics, gas exchange, and hydraulic traits[J]. Frontiers in Plant Science, 9: 683. doi:  10.3389/fpls.2018.00683
    [83] Zhang J L, Cao K F, 2009. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species[J]. Functional Ecology, 23(4): 658-667. doi:  10.1111/j.1365-2435.2009.01552.x
    [84] Zhang S B, Zhang J L, Cao K F, 2017. Divergent hydraulic safety strategies in three co-occurring Anacardiaceae tree species in a Chinese savanna[J]. Frontiers in Plant Science, 7: 2075. doi:  10.3389/fpls.2016.02075
    [85] Zhu S D, Liu H, Xu Q Y, et al, 2016. Are leaves more vulnerable to cavitation than branches? [J]. Functional Ecology, 30(11): 1740-1744. doi:  10.1111/1365-2435.12656
    [86] Zhu Y H, Kang H Z, Xie Q, et al, 2012. Pattern of leaf vein density and climate relationship of Quercus variabilis populations remains unchanged with environmental changes[J]. Trees, 26(2): 597-607. doi:  10.1007/s00468-011-0624-0
    [87] Zwieniecki M A, Brodribb T J, Holbrook N M, 2007. Hydraulic design of leaves: insights from rehydration kinetics[J]. Plant, Cell & Environment, 30(8): 910-921. doi:  10.1111/j.1365-3040.2007.001681.x
    [88] Zwieniecki M A, Boyce C K, 2014. Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology[J]. Proceedings of the Royal Society B: Biological Sciences, 281(1779): 20132829. doi:  10.1098/rspb.2013.2829
  • 加載中
表(1)
計量
  • 文章訪問數:  827
  • HTML全文瀏覽量:  521
  • PDF下載量:  173
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-02-21
  • 錄用日期:  2022-04-27
  • 網絡出版日期:  2022-07-11
  • 刊出日期:  2022-07-19

目錄

    /

    返回文章
    返回