<p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"></p>
<output id="3zz5p"></output><video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<p id="3zz5p"></p>
<p id="3zz5p"></p>

<output id="3zz5p"></output>
<video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

<video id="3zz5p"><p id="3zz5p"></p></video>

<video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

<noframes id="3zz5p"><p id="3zz5p"></p>
<p id="3zz5p"></p>

<p id="3zz5p"></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"><delect id="3zz5p"></delect></p>

<video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
<p id="3zz5p"></p>

<delect id="3zz5p"></delect>

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

生態系統多功能性驅動因子及機制研究進展

李非凡 劉順 許格希 陳淼 陳健 邢紅爽 史作民

李非凡, 劉順, 許格希, 陳淼, 陳健, 邢紅爽, 史作民. 生態系統多功能性驅動因子及機制研究進展[J]. 陸地生態系統與保護學報, 2022, 2(2): 74-82. doi: 10.12356/j.2096-8884.2022-0011
引用本文: 李非凡, 劉順, 許格希, 陳淼, 陳健, 邢紅爽, 史作民. 生態系統多功能性驅動因子及機制研究進展[J]. 陸地生態系統與保護學報, 2022, 2(2): 74-82. doi: 10.12356/j.2096-8884.2022-0011
Feifan Li, Shun Liu, Gexi Xu, Miao Chen, Jian Chen, Hongshuang Xing, Zuomin Shi. Research Progress on Drivers and Mechanisms of Ecosystem Multifunctionality[J]. Terrestrial Ecosystem and Conservation, 2022, 2(2): 74-82. doi: 10.12356/j.2096-8884.2022-0011
Citation: Feifan Li, Shun Liu, Gexi Xu, Miao Chen, Jian Chen, Hongshuang Xing, Zuomin Shi. Research Progress on Drivers and Mechanisms of Ecosystem Multifunctionality[J]. Terrestrial Ecosystem and Conservation, 2022, 2(2): 74-82. doi: 10.12356/j.2096-8884.2022-0011

生態系統多功能性驅動因子及機制研究進展

doi: 10.12356/j.2096-8884.2022-0011
基金項目: 中央級公益性科研院所基本科研業務費專項資金資助項目(CAFYBB2021ZA002-2,CAFYBB2018ZA003);中國林科院森環森保所科研發展專項(99805-2020)
詳細信息
    作者簡介:

    李非凡:E-mail: 19139507805@163.com

    通訊作者:

    E-mail: shizm@caf.ac.cn

  • 中圖分類號: Q148

Research Progress on Drivers and Mechanisms of Ecosystem Multifunctionality

  • 摘要: 近年來,生態系統多功能性(ecosystem multifunctionality)成為生態學研究的熱點問題,開展生態系統多功能性與生物和非生物因子的研究有助于更深入地理解生態系統多功能性形成機制。通過回溯生態系統多功能性的研究歷程,總結了3個不同維度水平的生物多樣性,即物種多樣性、功能多樣性、系統發育多樣性,尤其是植物功能多樣性與生態系統多功能性的研究進展;分析了全球變化背景下,生態系統多功能性對土地利用變化、降水、氮沉降、溫度升高的響應機制。最后提出了未來生態系統多功能性研究需重點關注的領域:1)生態系統多功能性的功能指標選擇和計算方法;2)不同維度水平的生物多樣性對生態系統多功能性的影響機制;3)生態系統多功能性對植物地上?地下功能多樣性的響應;4)土壤微生物多樣性對生態系統多功能性的影響;5)全球變化多因子及交互作用對生態系統多功能性的影響。為更深入認識生態系統多功能性及其維持機制、優化生態系統功能、保障其穩定性和可持續性提供科學參考。
  • 圖  1  生物與非生物因子共同調控生態系統多功能性

    Figure  1.  Biotic and abiotic factors jointly regulate ecosystem multifunctionality

    圖  2  不同維度水平的生物多樣性對生態系統多功能性的影響(改自徐煒等,2016

    Figure  2.  Impacts of biodiversity at different dimension levels on ecosystem multifunctionality (Adopted from Xu et al., 2016)

    圖  3  氮沉降對生態系統多功能性調控機制

    Figure  3.  Mechanisms of nitrogen deposition regulate the ecosystem multifunctionality

    <p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"></p>
    <output id="3zz5p"></output><video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <output id="3zz5p"></output>
    <video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

    <video id="3zz5p"><p id="3zz5p"></p></video>

    <video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

    <noframes id="3zz5p"><p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <p id="3zz5p"></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"><delect id="3zz5p"></delect></p>

    <video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
    <p id="3zz5p"></p>

    <delect id="3zz5p"></delect>
    屌“啊……慢点…肏
  • [1] 馮秋紅, 史作民, 董莉莉, 2008. 植物功能性狀對環境的響應及其應用[J]. 林業科學, 44(4): 125-131. doi:  10.11707/j.1001-7488.20080423
    [2] 付偉, 武慧, 趙愛花, 等, 2020. 陸地生態系統氮沉降的生態效應: 研究進展與展望[J]. 植物生態學報, 44(5): 475-493. doi:  10.17521/cjpe.2019.0163
    [3] 黃小波, 郎學東, 李帥鋒, 等, 2021. 生態系統多功能性的指標選擇與驅動因子: 研究現狀與展望[J]. 生物多樣性, 29(12): 1673-1686. doi:  10.17520/biods.2021111
    [4] 黃小波, 李帥鋒, 蘇建榮, 等, 2017. 云南松天然次生林物種豐富度與生態系統多功能性的關系[J]. 生物多樣性, 25(11): 1182-1191. doi:  10.17520/biods.2017167
    [5] 井新, 賀金生, 2021. 生物多樣性與生態系統多功能性和多服務性的關系: 回顧與展望[J]. 植物生態學報, 45(10): 1094-1111. doi:  10.17521/cjpe.2020.0154
    [6] 李麗, 高俊琴, 雷光春, 等, 2011. 若爾蓋不同地下水位泥炭濕地土壤有機碳和全氮分布規律[J]. 生態學雜志, 30(11): 2449-2455. doi:  10.13292/j.1000-4890.2011.0365
    [7] 馬克平, 1993. 試論生物多樣性的概念[J]. 生物多樣性, 1(1): 20-22. doi:  10.17520/biods.1993005
    [8] 牛書麗, 陳衛楠, 2020. 全球變化與生態系統研究現狀與展望[J]. 植物生態學報, 44(5): 449-460. doi:  10.17521/cjpe.2019.0355
    [9] 王凱, 王聰, 馮曉明, 等, 2022. 生物多樣性與生態系統多功能性的關系研究進展[J]. 生態學報, 42(1): 11-23. doi:  10.5846/stxb202105141263
    [10] 王悅驊, 宋曉輝, 王占文, 等, 2018. 短花針茅荒漠草原植物地上地下生物量對載畜率和降水的響應[J]. 西北植物學報, 38(8): 1526-1533.
    [11] 王志恒, 劉玲莉, 2021. 生態系統結構與功能: 前沿與展望[J]. 植物生態學報, 45(10): 1033-1035. doi:  10.17521/cjpe.2021.0370
    [12] 徐煒, 馬志遠, 井新, 等, 2016. 生物多樣性與生態系統多功能性: 進展與展望[J]. 生物多樣性, 24(1): 55-71. doi:  10.17520/biods.2015091
    [13] Allan E, Manning P, Alt F, et al, 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition[J]. Ecology Letters, 18(8): 834-843. doi:  10.1111/ele.12469
    [14] Bongers F J, Schmid B, Bruelheide H, et al, 2021. Functional diversity effects on productivity increase with age in a forest biodiversity experiment[J]. Nature Ecology & Evolution, 5(12): 1594-1603. doi:  10.1038/s41559-021-01564-3
    [15] Bradford M A, Wood S A, Bardgett R D, et al, 2014. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition[J]. Proceedings of the National Academy of Sciences, 111(40): 14478-14483. doi:  10.1073/pnas.1413707111
    [16] Byrnes J, Lefcheck J S, Gamfeldt L, et al, 2014a. Multifunctionality does not imply that all functions are positively correlated[J]. Proceedings of the National Academy of Sciences, 111(51): E5490. doi:  10.1073/pnas.1419515112
    [17] Byrnes J E K, Gamfeldt L, Isbell F, et al, 2014b. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions[J]. Methods in Ecology and Evolution, 5(2): 111-124. doi:  10.1111/2041-210X.12143
    [18] Cadotte M W, Dinnage R, Tilman D, 2012. Phylogenetic diversity promotes ecosystem stability[J]. Ecology, 93(sp8): S223-S233. doi:  10.1890/11-0426.1
    [19] Cadotte M W, Livingstone S W, Yasui S L E, et al, 2017. Explaining ecosystem multifunction with evolutionary models[J]. Ecology, 98(12): 3175-3187. doi:  10.1002/ecy.2045
    [20] Cardinale B J, Matulich K L, Hooper D U, et al, 2011. The functional role of producer diversity in ecosystems[J]. American Journal of Botany, 98(3): 572-592. doi:  10.3732/ajb.1000364
    [21] Chapin F S, Matson P A, Vitousek P M, 2011. Principles of terrestrial ecosystem ecology[M]. New York, NY: Springer.
    [22] Chillo V, Vázquez D P, Amoroso M M, et al, 2018. Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest[J]. Functional Ecology, 32(5): 1390-1399. doi:  10.1111/1365-2435.13064
    [23] de Bello F, Lavorel S, Díaz S, et al, 2010. Towards an assessment of multiple ecosystem processes and services via functional traits[J]. Biodiversity and Conservation, 19(10): 2873-2893. doi:  10.1007/s10531-010-9850-9
    [24] Delgado-Baquerizo M, Eldridge D J, Ochoa V, et al, 2017b. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe[J]. Ecology Letters, 20(10): 1295-1305. doi:  10.1111/ele.12826
    [25] Delgado-Baquerizo M, Maestre F T, Reich P B, et al, 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 7(1): 10541. doi:  10.1038/ncomms10541
    [26] Delgado-Baquerizo M, Trivedi P, Trivedi C, et al, 2017a. Microbial richness and composition independently drive soil multifunctionality[J]. Functional Ecology, 31(12): 2330-2343. doi:  10.1111/1365-2435.12924
    [27] Díaz S, Lavorel S, de Bello F, et al, 2007. Incorporating plant functional diversity effects in ecosystem service assessments[J]. Proceedings of the National Academy of Sciences, 104(52): 20684-20689. doi:  10.1073/pnas.070471610
    [28] Eisenhauer N, Hines J, Isbell F, et al, 2018. Plant diversity maintains multiple soil functions in future environments[J]. eLife, 7: e41228. doi:  10.7554/eLife.41228
    [29] Flynn D F B, Mirotchnick N, Jain M, et al, 2011. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships[J]. Ecology, 92(8): 1573-1581. doi:  10.1890/10-1245.1
    [30] Fry E L, Savage J, Hall A L, et al, 2018. Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland[J]. Ecology, 99(10): 2260-2271. doi:  10.1002/ecy.2437
    [31] Garland G, Banerjee S, Edlinger A, et al, 2021. A closer look at the functions behind ecosystem multifunctionality: a review[J]. Journal of Ecology, 109(2): 600-613. doi:  10.1111/1365-2745.13511
    [32] Garnier E, Cortez J, Billès G, et al, 2004. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 85(9): 2630-2637. doi:  10.1890/03-0799
    [33] Grime J P, 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects[J]. Journal of Ecology, 86(6): 902-910. doi:  10.1046/j.1365-2745.1998.00306.x
    [34] Gross N, Bagousse-Pinguet Y L, Liancourt P, et al, 2017. Functional trait diversity maximizes ecosystem multifunctionality[J]. Nature Ecology & Evolution, 1(5): 0132. doi:  10.1038/s41559-017-0132
    [35] Hector A, Bagchi R, 2007. Biodiversity and ecosystem multifunctionality[J]. Nature, 448: 188-190. doi:  10.1038/nature05947
    [36] Hector A, Schmid B, Beierkuhnlein C, et al, 1999. Plant diversity and productivity experiments in European grasslands[J]. Science, 286(5442): 1123-1127. doi:  10.1126/science.286.5442.112
    [37] Huang X B, Su J R, Li S F, et al, 2019. Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest[J]. Scientific Reports, 9(1): 6979. doi:  10.1038/s41598-019-43475-1
    [38] Jing X, Sanders N J, Shi Y, et al, 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate[J]. Nature Communications, 6: 8159. doi:  10.1038/ncomms9159
    [39] Le Bagousse-Pinguet Y, Soliveres S, Gross N, et al, 2019. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences, 116(17): 8419-8424. doi:  10.1073/pnas.1815727116
    [40] Li J, Li S F, Huang X B, et al, 2022. Plant diversity and soil properties regulate the microbial community of monsoon evergreen broad-leaved forest under different intensities of woodland use[J]. Science of the Total Environment, 821: 153565. doi:  10.1016/j.scitotenv.2022.153565
    [41] Li J, Zheng Z, Xie H, et al, 2017. Heterogeneous microcommunities and ecosystem multifunctionality in seminatural grasslands under three management modes[J]. Ecology and Evolution, 7(1): 14-25. doi:  10.1002/ece3.2604
    [42] Liu X C, Shi X M, Zhang S T, 2021. Soil abiotic properties and plant functional diversity co-regulate the impacts of nitrogen addition on ecosystem multifunctionality in an alpine meadow[J]. Science of the Total Environment, 780: 146476. doi:  10.1016/j.scitotenv.2021.146476
    [43] Liu X C, Zhang S T, 2019. Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil[J]. Plant and Soil, 440(1): 11-24. doi:  10.1007/s11104-019-04054-5
    [44] Liu Y R, Delgado-Baquerizo M, Trivedi P, et al, 2017. Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change[J]. Soil Biology and Biochemistry, 107: 208-217. doi:  10.1016/j.soilbio.2016.12.003
    [45] Luo Y H, Cadotte M W, Burgess K S, et al, 2019. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function[J]. Ecology Letters, 22(9): 1449-1461. doi:  10.1111/ele.13330
    [46] Maestre F T, Quero J L, Gotelli N J, et al, 2012. Plant species richness and ecosystem multifunctionality in global drylands[J]. Science, 335(6065): 214-218. doi:  10.1126/science.1215442
    [47] Manning P, van der Plas F, Soliveres S, et al, 2018. Redefining ecosystem multifunctionality[J]. Nature Ecology & Evolution, 2(3): 427-436. doi:  10.1038/s41559-017-0461-7
    [48] Mason N W H, Mouillot D, Lee W G, et al, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity[J]. Oikos, 111(1): 112-118. doi:  10.1111/j.0030-1299.2005.13886.x
    [49] Mazel F, Pennell M W, Cadotte M W, et al, 2018. Prioritizing phylogenetic diversity captures functional diversity unreliably[J]. Nature Communications, 9(1): 2888. doi:  10.1038/s41467-018-05126-3
    [50] Naeem S, Knops J M H, Tilman D, et al, 2000. Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors[J]. Oikos, 91(1): 97-108. doi:  10.1034/j.1600-0706.2000.910108.x
    [51] Naeem S, Thompson L J, Lawler S P, et al, 1994. Declining biodiversity can alter the performance of ecosystems[J]. Nature, 368(6473): 734-737. doi:  10.1038/368734a0
    [52] Odum E P, Barrett G W, 1971. Fundamentals of ecology[M]. Philadelphia: Saunders College Publishing.
    [53] Peco B, Navarro E, Carmona C P, et al, 2017. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits[J]. Agriculture, Ecosystems & Environment, 249: 215-225. doi:  10.1016/j.agee.2017.08.013
    [54] Perkins D M, Bailey R A, Dossena M, et al, 2015. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes[J]. Global Change Biology, 21(1): 396-406. doi:  10.1111/gcb.12688
    [55] Peter H, Beier S, Bertilsson S, et al, 2011. Function-specific response to depletion of microbial diversity[J]. The ISME Journal, 5(2): 351-361. doi:  10.1038/ismej.2010.119
    [56] Reich P B, Knops J, Tilman D, et al, 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition[J]. Nature, 410(6830): 809-810. doi:  10.1038/35071062
    [57] Reich P B, Tilman D, Isbell F, et al, 2012. Impacts of biodiversity loss escalate through time as redundancy fades[J]. Science, 336(6081): 589-592. doi:  10.1126/science.1217909
    [58] Roger F, Bertilsson S, Langenheder S, et al, 2016. Effects of multiple dimensions of bacterial diversity on functioning, stability and multifunctionality[J]. Ecology, 97(10): 2716-2728. doi:  10.1002/ecy.1518
    [59] Romillac N, Santorufo L, 2021. Transferring concepts from plant to microbial ecology: a framework proposal to identify relevant bacterial functional traits[J]. Soil Biology and Biochemistry, 162: 108415. doi:  10.1016/j.soilbio.2021.108415
    [60] Ruiz-Benito P, Ratcliffe S, Jump A S, et al, 2017. Functional diversity underlies demographic responses to environmental variation in European forests[J]. Global Ecology and Biogeography, 26(2): 128-141. doi:  10.1111/geb.12515
    [61] Sala O E, Chapin F S Ⅲ, Armesto J J, et al, 2000. Global biodiversity scenarios for the year 2100[J]. Science, 287(5459): 1770-1774. doi:  10.1126/science.287.5459.177
    [62] Sanderson M A, Skinner R H, Barker D J, et al, 2004. Plant species diversity and management of temperate forage and grazing land ecosystems[J]. Crop Science, 44(4): 1132-1144. doi:  10.2135/cropsci2004.1132
    [63] Srivastava D S, Cadotte M W, Macdonald A A M, et al,, 2012. Phylogenetic diversity and the functioning of ecosystems[J]. Ecology Letters, 15(7): 637-648. doi:  10.1111/j.1461-0248.2012.01795.x
    [64] Steinauer K, Chatzinotas A, Eisenhauer N, 2016. Root exudate cocktails: the link between plant diversity and soil microorganisms[J]. Ecology and Evolution, 6(20): 7387-7396. doi:  10.1002/ece3.2454
    [65] Steudel B, Hallmann C, Lorenz M, et al, 2016. Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity[J]. New Phytologist, 212(2): 409-420. doi:  10.1111/nph.14054
    [66] Tilman D, Downing J A, 1994. Biodiversity and stability in grasslands[J]. Nature, 367(6461): 363-365. doi:  10.1038/367363a0
    [67] Tilman D, Lehman C L, Thomson K T, 1997. Plant diversity and ecosystem?productivity: theoretical considerations[J]. Proceedings of the National Academy of Sciences, 94(5): 1857-1861. doi:  10.1073/pnas.94.5.1857
    [68] Tilman D, Reich P B, Knops J, et al, 2001. Diversity and productivity in a long-term grassland experiment[J]. Science, 294(5543): 843-845. doi:  10.1126/science.1060391
    [69] Tilman D, Wedin D, Knops J, 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature, 379(6567): 718-720. doi:  10.1038/379718a0
    [70] Valencia E, Gross N, Quero J L, et al, 2018. Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality[J]. Global Change Biology, 24(12): 5642-5654. doi:  10.1111/gcb.14440
    [71] Valencia E, Maestre F T, Le Bagousse-Pinguet Y, et al, 2015. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands[J]. New Phytologist, 206(2): 660-671. doi:  10.1111/nph.13268
    [72] van der Heijden M G A, Bardgett R D, van Straalen N M, 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 11(3): 296-310. doi:  10.1111/j.1461-0248.2007.01139.x
    [73] van der Heijden M G A, Klironomos J N, Ursic M, et al, 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity[J]. Nature, 396(6706): 69-72. doi:  10.1038/23932
    [74] van der Plas F, 2019. Biodiversity and ecosystem functioning in naturally assembled communities[J]. Biological Reviews, 94(4): 1220-1245. doi:  10.1111/brv.12499
    [75] Wagg C, Bender S F, Widmer F, et al, 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences, 111(14): 5266-5270. doi:  10.1073/pnas.1320054111
    [76] Wardle D A, Bardgett R D, Klironomos J N, et al, 2004. Ecological linkages between aboveground and belowground biota[J]. Science, 304(5677): 1629-1633. doi:  10.1126/science.1094875
    [77] Wei C Z, Yu Q, Bai E, et al, 2013. Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems[J]. Global Change Biology, 19(12): 3688-3697. doi:  10.1111/gcb.12348
    [78] Wen Z, Zheng H, Zhao H, et al, 2020. Land-use intensity indirectly affects soil multifunctionality via a cascade effect of plant diversity on soil bacterial diversity[J]. Global Ecology and Conservation, 23: e01061. doi:  10.1016/j.gecco.2020.e01061
    [79] Xu Y J, Zhang Y, Yang J, et al, 2020. Influence of tree functional diversity and stand environment on fine root biomass and necromass in four types of evergreen broad-leaved forests[J]. Global Ecology and Conservation, 21: e00832. doi:  10.1016/j.gecco.2019.e00832
    [80] Xu Z W, Li M H, Zimmermann N E, et al, 2018. Plant functional diversity modulates global environmental change effects on grassland productivity[J]. Journal of Ecology, 106(5): 1941-1951. doi:  10.1111/1365-2745.12951
    [81] Yan Y Z, Zhang Q, Buyantuev A, et al, 2020. Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality[J]. Science of the Total Environment, 726: 138529. doi:  10.1016/j.scitotenv.2020.138529
    [82] Yang H J, Li Y, Wu M Y, et al, 2011. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits[J]. Global Change Biology, 17(9): 2936-2944. doi:  10.1111/j.1365-2486.2011.02423.x
    [83] Yang Y F, 2021. Emerging patterns of microbial functional traits[J]. Trends in Microbiology, 29(10): 874-882. doi:  10.1016/j.tim.2021.04.004
  • 加載中
圖(3)
計量
  • 文章訪問數:  1258
  • HTML全文瀏覽量:  466
  • PDF下載量:  258
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-16
  • 網絡出版日期:  2022-06-08
  • 刊出日期:  2022-07-19

目錄

    /

    返回文章
    返回