Dynamic Evaluation on the Floodwater Storage Function Value of Wetlands in Jilin Province
-
摘要:
目的 動態評估吉林省的濕地調蓄洪水功能價值,為吉林省的濕地安全及濕地環境管理提供理論支撐。 方法 通過機會成本法對吉林省2013、2017年的濕地調蓄洪水功能價值進行對比和評估,分析不同類型濕地及各市的濕地調蓄洪水功能價值變化。 結果 2013和2017年吉林省濕地調蓄洪水功能的總價值分別為2910.10億元和2685.49億元,受濕地面積降低的影響,2017年比2013年減少了224.61億元,對應減少比例為7.72%。在吉林省各市中,濕地調蓄洪水功能價值增加最大的為吉林市(157.47億元),降低最大的為松原市(?218.77億元)。雖有部分城市的洪水調蓄功能價值上漲,但吉林省濕地調蓄洪水功能價值整體呈下降狀態,而且各市的濕地調蓄洪水功能價值的單位面積(每公頃濕地面積)和人均擁有量均有所變化。在各濕地類型的調蓄洪水功能價值中,沼澤濕地由2013年的510.97億元增加至2017年的777.60億元,是唯一增加的濕地類型,而人工濕地、河流濕地和湖泊濕地這3種濕地類型均有所下降。 結論 相比2013年,2017年吉林省的濕地調蓄洪水功能價值整體呈下降趨勢,各市和各類濕地的單位面積和人均的濕地調蓄洪水功能價值有明顯的地域差異。 Abstract:Objective This article dynamically evaluates the floodwater storage function value of wetlands in Jilin Province, providing theoretical support for wetland safety and environmental management in Jilin Province. Method The opportunity cost method was used to compare and evaluate the floodwater storage function value of wetlands in Jilin Province in 2013 and 2017, and to analyze the changes in floodwater storage function value of different types of wetlands and various cities. Result The total value of floodwater storage function of wetlands in Jilin Province was 291.010 billion yuan in 2013 and 268.549 billion yuan in 2017. Due to the reduction in wetland area, the value in 2017 decreased by 22.461 billion yuan compared to 2013, with a decrease rate of 7.72%. Among the cities in Jilin Province, Jilin City had the largest increase in floodwater storage function value (15.747 billion yuan), while Songyuan City had the largest decrease (21.877 billion yuan). Although some cities have increased the floodwater storage function value, the overall value of wetland floodwater storage function in Jilin Province is decreasing, and the per unit area (per hectare of wetland area) and per capita ownership of wetland floodwater storage function value of each city have also changed. Among the floodwater storage function values of different types of wetlands, swamp wetlands increased from 51.097 billion yuan in 2013 to 77.760 billion yuan in 2017, which is the only type of wetland that increased, while artificial wetlands, river wetlands, and lake wetlands all decreased. Conclusion Compared with 2013, the overall trend of floodwater storage function value of wetlands in Jilin Province in 2017 was decreasing, and there were significant regional differences in per unit area and per capita floodwater storage function value of wetlands in each city and wetland type. -
表 1 數據類型及來源
Table 1. Data types and sources
數據類型
Data types數據來源
Data sources分辨率
Resolution/m氣象數據 Meteorological data 吉林省氣象局(http://jl.cma.gov.cn) — 遙感反演影像數據 Remote sensing inversion image data Landsat7 衛星遙感影像 30 高程數據 Elevation data SRTM DEM 80 人口數據 Population data 吉林省統計年鑒(http://tjj.jl.gov.cn/tjsj/tjnj/) — 用水價格數據 Water price data 吉林省統計年鑒(http://tjj.jl.gov.cn/tjsj/tjnj/) — 水資源數據 Water resource data 吉林省水資源公報(http://slt.jl.gov.cn/zwgk/szygb) — 表 2 吉林省濕地蓄水調節功能價值統計
Table 2. Statistics on the value of the water storage and regulation function of wetlands in Jilin Province
單位 Unit:億元 地區
Area人工濕地
Artificial wetlands湖泊濕地
Lake wetlands河流濕地
River wetlands沼澤濕地
Swamp wetlands合計
Total2013年 2017年 2013年 2017年 2013年 2017年 2013年 2017年 2013年 2017年 白城市
Baicheng City165.77 151.06 314.27 107.93 64.16 14.24 254.32 380.92 798.52 654.14 白山市
Baishan City8.75 40.47 2.35 2.76 38.38 49.26 6.84 14.91 56.32 107.40 吉林市
Jilin City278.84 385.96 0.00 0.00 19.05 66.42 4.19 7.17 302.08 459.55 遼源市
Liaoyuan City41.79 51.03 0.00 0.00 27.14 7.51 0.00 0.00 68.93 58.54 四平市
Siping City92.73 127.17 7.07 7.59 6.39 22.38 6.41 1.52 112.60 158.66 松原市
Songyuan City137.33 8.61 437.90 277.33 56.55 24.45 136.41 239.03 768.19 549.42 通化市
Tonghua City135.22 96.82 1.69 1.98 33.98 31.88 4.17 1.30 175.06 131.98 延邊朝鮮族自治州
Yanbian Korean
Autonomous Prefecture77.14 59.34 5.02 5.90 42.10 90.89 90.68 84.84 214.94 240.96 長春市
Changchun City281.15 185.05 46.98 55.18 77.38 36.67 7.95 47.92 413.46 324.82 合計
Total1218.72 1105.52 815.28 458.67 365.13 343.70 510.97 777.60 2910.10 2685.49 屌“啊……慢点…肏 -
[1] 崔麗娟, 2004. 鄱陽湖濕地生態系統服務功能價值評估研究[J]. 生態學雜志, 23(4): 47-51. doi: 10.13292/j.cnki:sun:stxz.0.2004-04-010 [2] 吉林省林業和草原局, 2022. 吉林重要濕地飲譽中外[J]. 森林與人類, (Z1): 78-81. [3] 焦雯雯, 2020. 東北地區重要濕地動態變化遙感監測[D]. 哈爾濱: 哈爾濱師范大學. [4] 李偉, 趙欣勝, 崔麗娟, 等, 2017. 吉林省濕地淡水資源供給功能及其價值核算[J]. 水生態學雜志, 38(1): 10-17. doi: 10.15928/j.1674-3075.2017.01.002 [5] 劉興土, 2007. 三江平原沼澤濕地的蓄水與調洪功能[J]. 濕地科學, 5(1): 64-68. doi: 10.13248/j.cnki.wetlandsci.2007.01.010 [6] 沈范珠, 趙大生, 2013. 吉林省濕地生態服務功能分析[J]. 吉林林業科技, 42(3): 21-24. doi: 10.16115/j.cnki.issn.1005-7129.2013.03.004 [7] 史涵, 李蒙, 王向東, 2019. 1980-2017年吉林省土地利用變化及驅動力分析[J]. 國土與自然資源研究, (4): 14-16. doi: 10.16202/j.cnki.tnrs.2019.04.005 [8] 孫芳蒂, 2013. 中國主要湖泊面積2000-2010年動態遙感監測[D]. 南京: 南京大學 [9] 佟劍杰, 賀華翔, 婁安宇, 2022. 基于外調水潛力的吉林省水資源承載力分析[J]. 水利規劃與設計, (9): 96-100. doi: 10.3969/j.issn.1672-2469.2022.09.018 [10] 王瑞卿, 張明祥, 武海濤, 等, 2022. 從《中華人民共和國濕地保護法》解析濕地定義與分類[J]. 濕地科學, 20(3): 404-412. doi: 10.13248/j.cnki.wetlandsci.2022.03.014 [11] 吳燕鋒, 章光新, 2021. 流域濕地水文調蓄功能研究綜述[J]. 水科學進展, 32(03): 458-469. doi: 10.14042/j.cnki.32.1309.2021.03.014 [12] 楊冉, 2022. 基于多源遙感大數據的中國退耕還濕潛力評價[D]. 長春: 吉林大學. [13] 于曉光, 李春華, 孫傳生, 等, 2005. 吉林濕地生態環境保護措施研究[J]. 水土保持研究, 12(6): 226-227. [14] 張灝, 王立, 孔東升, 2013. 黑河濕地自然保護區調蓄洪水與提供水源功能價值評估[J]. 干旱區資源與環境, 27(10): 152-156. doi: 10.13448/j.cnki.jalre.2013.10.017 [15] 趙欣勝, 崔麗娟, 李偉, 等, 2016. 吉林省濕地調蓄洪水功能分析及其價值評估[J]. 水資源保護, 32(4): 27-33. doi: 10.3880/j.issn.1004-6933.2016.04.004 [16] 中華人民共和國國家統計局, 2018. 中國統計年鑒[M]. 北京: 中國統計出版社. [17] Acreman M, Holden J, 2013. How wetlands affect floods[J]. Wetlands, 33: 773-786. doi: 10.1007/s13157-013-0473-2 [18] Ahmed F, 2017. Influence of wetlands on Black-Creek hydraulics[J]. Journal of Hydrologic Engineering, 22(1): D5016001. doi: 10.1061/(ASCE)HE.1943-5584.0001401 [19] An X X, Jin W P, Zhang H Q, Liu Y, et al, 2022. Analysis of long-term wetland variations in China using land use/land cover dataset derived from Landsat images[J]. Ecological Indicators, 145: 109689. doi: 10.1016/j.ecolind.2022.109689 [20] Fossey M, Rousseau A N, Bensalma F, et al, 2015. Integrating isolated and riparian wetland modules in the PHYSITEL/HYDROTEL modelling platform: model performance and diagnosis[J]. Hydrol Process, 29(22): 4683-4702. doi: 10.1002/hyp.10534 [21] Gao J H, Joseph H, Mike K, 2016. The impact of land-cover change on flood peaks in peatland basins[J]. Water Resource Research, 52: 3477-3492. doi: 10.1002/2015WR017667 [22] Grygoruk M, Miros?aw-?wi?tek D, Chrzanowska W, et al, 2013. How much for water? Economic assessment and mapping of floodplain water storage as a catchment: scale ecosystem service of wetlands[J]. Water, 5(4): 1760-1779. doi: 10.3390/w5041760 [23] Gulbin S, Kirilenko A P, Kharel G, et al, 2019. Wetland loss impact on long term flood risks in a closed watershed[J]. Environmental Science & Policy, 94: 112-122. doi: 10.1016/j.envsci.2018.12.032 [24] Jiang M, Lu X G, Xu L S, et al, 2007. Flood mitigation benefit of wetland soil: a case study in Momoge National Nature Reserve in China[J]. Ecological Economics, 61: 217-223. doi: 10.1016/j.ecolecon.2006.10.019 [25] Kadykalo A N, Findlay C S, 2016. The flow regulation services of wetlands[J]. Ecosystem Services, 20: 91-103. doi: 10.1016/j.ecoser.2016.06.005 [26] Keddy P A, 2010. Wetland ecology: principles and conservation[M]. New York: Cambridge University Press. [27] Lavoie R, Deslandes J, Proulx F, 2016. Assessing the ecological value of wetlands using the MACBETH approach in Quebec City[J]. Journal for Nature Conservation, 30: 67-75. doi: 10.1016/j.jnc.2016.01.007 [28] Mao D, Luo L, Wang Z, 2018. Conversions between natural wetlands and farmland in China: amultiscale geospatial analysis[J]. Science of the Total Environment, 634: 550-560. doi: 10.1016/j.scitotenv.2018.04.009 [29] Melly B, Schael D, Gama P, 2017. Perched wetlands: an explanation to wetland formation in semi-arid areas[J]. Journal of Arid Environments, 141: 34-39. doi: 10.1016/j.jaridenv.2017.02.004 [30] Meng W Q, He M X, Hu B B, et al, 2017. Status of wetlands in China: a review of extent, degradation, issues and recommendations for improvement[J]. Ocean & Coastal Management, 146: 50-59. doi: 10.1016/j.ocecoaman.2017.06.003 [31] Neri-Flores I, Moreno-Casasola P, Peralta-Peláez L A, et al, 2019. Groundwater and river flooding: the importance of wetlands in coastal zones[J]. Journal of Coastal Research, 92: 44-54. doi: 10.2112/SI92-006.1 [32] Tang Y, Leon A S, Kavvas M L, 2020. Impact of size and location of wetlands on watershed-scale flood control[J]. Water Resources Management, 34(5): 1693-1707. doi: 10.1007/s11269-020-02518-3 [33] Wu Y, Zhang G, Rousseau A N, 2020. On how wetlands can provide flood resilience in a large river basin: a case study in Nenjiang river Basin, China[J]. Journal of Hydrologic Engineering, 587: 125012. doi: 10.1016/j.jhydrol.2020.125012 [34] Zhang B, Shi Y T, Liu J H, et al, 2017. Economic values and dominant providers of key ecosystem services of wetlands in Beijing, China[J]. Ecological Indicators, 77: 48-58. doi: 10.1016/j.ecolind.2017.02.005 [35] Zhang L, Lu W X, Yang Q C, et al, 2012. Hydrological impacts of climate change on streamflow of dongliao river watershed in Jilin Province, China[J]. Chinese Geographical Science, 22(5): 522-530. doi: 10.1007/s11769-012-0559-4 [36] Zheng Y X, Zhang G X, Wu Y F, et al, 2019. Dam effects on downstream riparian wetlands: the Nenjiang River, Northeast China[J]. Water, 11(10): 2038. doi: 10.3390/w11102038 [37] Zou T H, Chang Y X, Chen P, et al, 2021. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018[J]. Ecological Indicators, 133: 108249. doi: 10.1016/j.ecolind.2021.108429 -