Comparison and Application of Survey Methods of Bird Diversity
-
摘要: 在鳥類多樣性研究中,種類和數量是評估物種受脅狀況、種群動態、群落結構特征、生態系統功能和棲息地質量的常用參數。受到鳥類生態類型多樣、行為特征和生活史差異較大等因素的影響,野外調查結果與鳥類多樣性的實際情況存在一定偏差。本文整理了7種常見鳥類多樣性調查方法的概念和調查統計指標,包括標圖法、直接計數法、樣線法、樣點法、紅外相機調查法、網捕法和鳴聲調查法,并對比了各方法的優缺點,以及在不同生境、不同鳥類類群間的適用性和生態假設條件。建議根據研究目的和對象選擇合適的調查方法,并多方法綜合使用,如樣點法和樣線法的適用范圍最廣,但活動隱蔽或數量稀少的鳥類需借助網捕、紅外相機或鳴聲法補充調查。其次提出傳統方法與新技術的結合使用,如水鳥調查中結合無人機和地面直接計數,雉科鳥類調查中結合紅外相機和標圖法,將有效提高調查效率和準確度。最后強調鳥類多樣性調查方法的標準化對今后我國鳥類學群落理論研究、大尺度多樣性監測網絡與評價體系建設、區域保護策略制定具有重要推動作用。Abstract: Bird species richness and population abundance have a wide applications in assessing species threatened status, population dynamics, community structure characteristics, ecosystem function and habitat quality. Due to the diversity of ecological types and the wide variation in behavioural characteristics and life histories, there are some deviations between field survey results and the actual situation of bird diversity. This study compiles the concepts and statistical indicators of seven bird survey methods, including territory mapping, individual counts, line transects, point transects, camera trapping, mist netting and vocalization surveying. By comparing the advantages and applicability of each method in different habitats and different bird groups, we suggest that the optimal method should be selected according to the research purpose and object, and multiple methods should be used in combination. For example, the line transects and point transects are the most widely applicable, while mist netting, camera trapping and vocalization surveying are necessary for birds with hidden habits or sparse population. Secondly, the combination of traditional methods with new technologies will effectively improve the efficiency and accuracy of bird survey. Such as the combination of unmanned aerial vehicles and aggregating counts in waterbird surveying, and the combination of camera trapping and territory mapping in pheasant surveying. Finally, we prospect that the standardization of bird survey methods will play an important role in promoting the basic theoretical research of ornithological community theory, the construction of large-scale monitoring network and evaluation system, and the formulation of regional conservation strategies in China.
-
Key words:
- birds /
- stratified sampling /
- biodiversity monitoring /
- population abundance
-
附錄 Supplementary Material 1 鳥類多樣性調查方法示意圖、野外工作流程與數量統計指標
1. Schematic diagram, field work flow and statistical indicators of bird survey methods
調查方法
Methods示意圖
Schematic diagram野外工作流程
Field work flow數量統計指標
Statistical indicators標圖法
Territory mapping1.根據調查對象和棲息地確定樣地面積、調查路線、時間和次數,按比例制作樣地圖;
2.在樣地中調查鳥類,將所有發現的同種鳥類及其痕跡、活動,特別是求偶、爭斗、巢址等與領域相關的信息,準確定位標記到樣地圖中,作為調查圖(visit map) ,每次調查1張;
3.同種鳥類的每次調查的信息都轉換記錄至其種類圖(species map) ,每種1張;
4.結合種類圖中多次調查所記錄的位點及其信息(如▲代表鳥類個體,■代表巢址,∽代表領域爭斗行為),圈出互不重疊的位點群,為大致的鳥類領域邊界。$ D = \dfrac{{c \cdot n}}{s} $
D為種群密度,c為總位點群數,n為每一位點群內平均個體數,s為樣地面積直接計數法
Individual counts
直接計數法:
直接數出集群個體數量
直接辨認種類并計算種群數量 集團統計法:
設定包含n個個體的小集團,通過數小集團數量從而估計總集群數量
(圖中以10個一組為例,共6組,即估算該集群包含60個個體)樣線法
Line transects1.系統或分層隨機選擇調查樣線,充分代表樣地;
2.按需設置調查重復次數、前進速度、樣線長度l和調查寬度w等;
3.根據上述要求,沿樣線勻速前進,按距離帶(如0<w1<25 m,w2>25 m)調查記錄鳥類個體(①和③位于調查帶w1,②和④位于w2) ;或測定所有個體至樣線的實際距離h;
4.一定時間間隔后重復調查,分析數據。
$ D = \dfrac{n}{{{\text{2}} \cdot l \cdot w}} $
D為種群密度,n為調查記錄鳥類個體數,l為樣線長度,w為單側截線寬度
以單位時間或路線的遇見率代表相對數量 樣點法
Point transects1.系統或分層隨機選擇調查樣點,充分代表樣地;
2.按需設置樣點數量、調查持續時間、重復次數和調查半徑r 等;
3.調查者靜止在樣點中心p,按距離區(如0<r1<50 m,r2>50 m)調查記錄鳥類個體(①和②位于調查區r1,③和④位于r2) ;或測定所有個體至樣點中心的實際距離h;
4.一定時間間隔后重復調查,分析數據。
$ D = \dfrac{n}{{3.14{r^{\text{2}}}}} $
D為種群密度,n為調查記錄鳥類個體數,r為截線半徑
以每個樣點的平均個體數或出現頻度代表相對數量 紅外相機
調查法
Camera trapping1.根據調查目的和需要選擇紅外相機布設點;
2.設置紅外相機,自動監測前方一定距離的區域,當有野生動物出現會觸發設備,拍攝照片與動態影像;
3.回收紅外相機監測數據與處理分析。相對多度指數:
$ {\text{RAI}} = \dfrac{{\displaystyle\sum\nolimits_{i = 1} {{N_i}} }}{{\displaystyle\sum\nolimits_{i = 1} {Trapda{y_i}} }} \times 100 $
Trapdayi為相機位點i的拍攝天數,Ni為相機位點i拍攝的某一物種的有效照片數相對豐富度指數:
$ {\text{SA}}{{\text{I}}_{}} = \dfrac{{{A_i}}}{N} \times 100 $
Ai為目標物種的獨立有效照片數,N為所有物種的獨立有效照片數網捕法
Mist netting1.根據研究目的確定霧網架設位置、時長、類型、調查次數等,向相關管理部門提出申請并獲取批準;
2.清理網場,架設霧網(森林鳥類群落調查中網場通常高約3 m,長13~15 m,寬1~2 m;霧網規格一般長12 m,高2.5 m,網眼36 mm) ;
3.每隔一段時間檢查、記錄上網鳥類。
標記重捕模型:
$ P = \dfrac{{a \cdot n}}{r} $
P為種群數量,a為標記個體數量,n為第2次捕獲個體總數,r為第2次捕獲標記個體數
以網捕率表示相對種群數量 鳴聲調查法
Vocalization surveying
鳴聲回放法:
播放目標物種鳴聲,吸引其作出回應或接近聲源等反應
協助鳥類數量調查
鳴聲計數法:
1.通過主、被動的錄音設備采集鳥類鳴聲;
2.使用相關的電腦軟件分析聲音特征,繪制聲譜圖(sound spectrogram)
量化分析鳴聲特點差異或聲音指數。
分析鳴聲聲譜圖區分物種,或使用生物聲學指數等聲音指數反映鳥類多樣性 2 不同鳥類調查方法的適用性與生態假設條件
2. Ecological applicability and assumptions of each bird survey methods
調查方法
Methods適宜生境
Habitat適宜鳥種
Bird characteristics缺點
Insufficient生態假設條件
Ecological assumptions標圖法
Territory mapping平坦生境,植被稀疏 繁殖期間領域性行為明顯 人力成本高,效率低 ①繁殖期間鳥類都具有領域性,且總在領域內活動;
②鳥類成對,每一領域內具有2個個體;
③樣地內所有鳥類個體的發現率相同,能被正確發現和記錄;
④調查結果不受調查人員活動、植被結構等因素影響;
⑤除了要求最小面積外,面積因素對結果無影響。直接計數法
Individual counts寬闊生境,遮擋少 小范圍集群活動 估算數量受調查者主觀影響 ①調查者能正確識別鳥類種類并準確數出集群數量;
②一定時間、范圍內,同種鳥類的大部分個體集群活動,集群大小反映其種群數量。樣線法
Line transects可視距離高,植被稀疏 較易發現,樣地中分布密度低 對珍稀、罕見鳥種的調查效果較差 ①完整記錄調查范圍內的鳥類;
②鳥類不因調查者的存在而進出調查范圍;
③所有發現的個體都相互獨立,未被重復記錄;
④準確測定鳥類個體至樣線(樣點)的距離;
⑤每次鳥類調查相互獨立;
⑥正確鑒別所有的鳥類。樣點法
Point transects可視距離低、異質性高、斑塊狀生境 較易發現,樣地中分布均勻 對珍稀、罕見鳥種的調查效果較差 紅外相機調查法
Camera trapping隱蔽布設紅外相機 地面及林下層活動 主要適用于地棲性鳥類 ①調查物種間差異明顯,能準確識別種類;
②照片拍攝率與鳥類的密度呈正相關;
③紅外相機設置隱蔽,沒有對鳥類行為活動造成影響。網捕法
Mist netting林地 森林內部鳥 難以調查林冠層活動的鳥類,鳥類有受傷和死亡的風險 標記重捕模型:
①種群封閉,種群數量在監測期內不變;
②個體間被捕獲的概率相等;
③標記不影響個體的正?;顒?,且留存時間不能短于監測時間;
④第2次取樣前個體充分均勻混合。網捕率表示相對多度:
①網捕率與鳥類的密度呈正相關;
②網捕過程沒有影響鳥類的行為。鳴聲調查法
Vocalization surveying噪音干擾較小 鳴聲明顯、獨特 難以監測少鳴叫的種類和個體 鳴聲計數:
①不同鳥類具有獨特的鳴聲,可區分其差異;
②能采集得到目標物種的高質量錄音。聲音指數反映多樣性:
①鳥類鳴聲具有特異性,隨著物種數增加,鳴聲特征將更加多樣,表現為聲音指數數值的變化。屌“啊……慢点…肏 -
[1] 陳立軍, 肖文宏, 肖治術, 2019. 物種相對多度指數在紅外相機數據分析中的應用及局限[J]. 生物多樣性, 27(3): 243-248. doi: 10.17520/biods.2018327 [2] 崔鵬, 徐海根, 丁暉, 等, 2013. 我國鳥類監測的現狀、問題與對策[J]. 生態與農村環境學報, 29(3): 403-408. doi: 10.3969/j.issn.1673-4831.2013.03.023 [3] 馮曉娟, 米湘成, 肖治術, 等, 2019. 中國生物多樣性監測與研究網絡建設及進展[J]. 中國科學院院刊, 34(12): 1389-1398. doi: 10.16418/j.issn.1000-3045.2019.12.008 [4] 郜二虎, 王志臣, 王維勝, 等, 2014. 全國第二次陸生野生動物資源調查總體思路[J]. 野生動物學報, 35(2): 238-240. doi: 10.3969/j.issn.1000-0127.2014.02.025 [5] 金麟雨, 李舒萌, 劉艷艷, 等, 2022. 樣線法和網捕法在機場鳥情調查中的應用比較[J]. 生態學報, 42(22): 9348-9358. doi: 10.5846/stxb202107021763 [6] 雷倩, 李金亞, 馬克明, 2018. 遙感技術在鳥類生態學研究中的應用[J]. 生物多樣性, 26(8): 862-877. doi: 10.17520/biods.2018143 [7] 李杰, 劉強, 2019. 無人機水禽監測模式的設立原則探討[J]. 熱帶地理, 39(4): 546-552. doi: 10.13284/j.cnki.rddl.003145 [8] 李晟, 王大軍, 肖治術, 等, 2014. 紅外相機技術在我國野生動物研究與保護中的應用與前景[J]. 生物多樣性, 22(6): 685-695. doi: 10.3724/SP.J.1003.2014.14203 [9] 李周園, 葉小洲, 王少鵬, 2021. 生態系統穩定性及其與生物多樣性的關系[J]. 植物生態學報, 45(10): 1127-1139. doi: 10.17521/cjpe.2020.0116 [10] 劉志發, 楊昌騰, 龔粵寧, 2018. 廣東南嶺國家級自然保護區森林鳥類多樣性監測[J]. 熱帶地理, 38(3): 328-336. doi: 10.13284/j.cnki.rddl.003050 [11] 袁志勝, 邢家華, 喬慧捷, 等, 2022. 基于同步計數和分區直數法相結合的鳥類多樣性快速調查——以2020年冬季拉魯濕地監測為例[J]. 高原科學研究, 6(3): 45-52. doi: 10.16249/j.cnki.2096-4617.2022.03.006 [12] 倫可環, 張雁云, 夏燦瑋, 2017. 基于聲音指數的鳥類多樣性監測[J]. 生物學通報, 52(11): 1-5. doi: 10.3969/j.issn.0006-3193.2017.11.001 [13] 馬嘉慧, 劉陽, 雷進宇, 2006. 鳥類調查方法實用手冊[M]. 香港: 香港觀鳥會有限公司. [14] 斯幸峰, 丁平, 2011. 歐美陸地鳥類監測的歷史、現狀與我國的對策[J]. 生物多樣性, 19(3): 303-310. doi: 10.3724/SP.J.1003.2011.08314 [15] 田園, 馮永軍, 張春蘭, 等, 2015. 樣線法在南方山地生態系統野生動物調查中的試點效果評價[J]. 生物多樣性, 23(1): 109-115. doi: 10.17520/biods.2014128 [16] 文云燕, 謝以昌, 李學紅, 2016. 恐龍河州級自然保護區綠孔雀監測探討[J]. 林業調查規劃, 41(4): 69-71. doi: 10.3969/j.issn.1671-3168.2016.04.015 [17] 吳飛, 楊曉君, 2008. 樣點法在森林鳥類調查中的運用[J]. 生態學雜志, 27(12): 2240-2244. doi: 10.13292/j.1000-4890.2008.0054 [18] 肖華, 張雁云, 2009. 鳥類鳴聲研究[J]. 生物學通報, 44(3): 11-13. doi: 10.3969/j.issn.0006-3193.2009.03.003 [19] 徐昌新, 阮祿章, 胡振鵬, 等, 2014. 鄱陽湖越冬鳥類種群動態與保護研究[J]. 長江流域資源與環境, 23(3): 407-414. doi: 10.11870/cjlyzyyhj201403015 [20] 徐海根, 崔鵬, 朱筱佳, 等, 2018. 全國鳥類多樣性觀測網絡(China BON-Birds)建設進展[J]. 生態與農村環境學報, 34(1): 1-11. doi: 10.11934/j.issn.1673-4831.2018.01.001 [21] 許龍, 張正旺, 丁長青, 2003. 樣線法在鳥類數量調查中的運用[J]. 生態學雜志, 22(5): 127-130. doi: 10.3321/j.issn:1000-4890.2003.05.029 [22] 張倩雯, 龔粵寧, 宋相金, 等, 2018. 紅外相機技術與其他幾種森林鳥類多樣性調查方法的比較[J]. 生物多樣性, 26(3): 229-237. doi: 10.17520/biods.2017275 [23] 張文文, 雍凡, 崔鵬, 2017. 國際鳥類監測項目抽樣策略及對我國的啟示[J]. 野生動物學報, 38(4): 689-693. doi: 10.3969/j.issn.1000-0127.2017.04.031 [24] 鄭光美, 2012. 鳥類學[M]. 2版. 北京: 北京師范大學出版社. [25] 朱淑怡, 段菲, 李晟, 2017. 基于紅外相機網絡促進我國鳥類多樣性監測: 現狀、問題與前景[J]. 生物多樣性, 25(10): 1114-1122. doi: 10.17520/biods.2017057 [26] 鄒發生, 陳桂珠, 2003. 霧網在森林鳥類群落研究中的應用[J]. 應用生態學報, 14(9): 1557-1560. doi: 10.3321/j.issn:1001-9332.2003.09.033 [27] 鄒發生, 陳桂珠, 2004. 海南島尖峰嶺熱帶山地雨林林下鳥類群落研究[J]. 生態學報, 24(3): 510-516. doi: 10.3321/j.issn:1000-0933.2004.03.017 [28] Anich N M, Benson T J, Bednarz J C, 2009. Estimating territory and home-range sizes: do singing locations alone provide an accurate estimate of space use[J]. Auk, 126(3): 626-634. doi: 10.1525/auk.2009.08219 [29] Barr J R, Green M C, Demaso S J, et al, 2020. Drone surveys do not increase colony-wide flight behaviour at waterbird nesting sites, but sensitivity varies among species[J]. Scientific Reports, 10(1): 3781. doi: 10.1038/s41598-020-60543-z [30] Bibby C J, 2000. Bird census techniques[M]. New York: Academic Press. [31] Blake J G, Loiselle B A, 2001. Bird assemblages in second-growth and old-growth forests, costa rica: perspectives from mist nets and point counts[J]. Auk, 118(2): 304-326. doi: 10.1093/auk/118.2.304 [32] Broughton R K, Hill R A, Freeman S N, et al, 2012. Describing habitat occupation by woodland birds with territory mapping and remotely sensed data: an example using the Marsh Tit (Poecile palustris)[J]. Condor, 114(4): 812-822. doi: 10.1525/cond.2012.110171 [33] Chen C W, Holyoak M, Si X F, et al, 2018. Do seasonal species assemblages differ in their biogeography? Evidence from the spatial structure of bird communities on land-bridge islands[J]. Journal of Biogeography, 45(2): 473-483. doi: 10.1111/jbi.13112 [34] Chris L, Michael J M, Robert J F, 2005. Combining archive territory mapping data and aerial photography to investigate bird-habitat relationships: a case study from the lincolnshire coast[J]. Bird Study, 52(3): 314-322. doi: 10.1080/00063650509461405 [35] Conway C J, 2011. Standardized North American marsh bird monitoring protocol[J]. Waterbirds, 34(3): 319-346. doi: 10.1675/063.034.0307 [36] Cutler T L, Swann D E, 1999. Using remote photography in wildlife ecology: a review[J]. Wildlife Society Bulletin, 27(3): 571-581. [37] David S D, Adam C R, 1998. Comparison of line-transect, spot-map, and point-count surveys for birds in riparian habitats of the great basin[J]. Journal of Field Ornithology, 69(3): 430-443. [38] Ding Z F, Feeley K J, Wang Y P, et al, 2013. Patterns of bird functional diversity on land-bridge island fragments[J]. The Journal of Animal Ecology, 82(4): 781-790. doi: 10.1111/1365-2656.12046 [39] Freeman B, 2014. Sexual niche partitioning in two species of new guinean pachycephala whistlers[J]. Journal of Field Ornithology, 85(1): 23-30. doi: 10.1111/jofo.12046 [40] Gottschalk T K, Huettmann F, 2011. Comparison of distance sampling and territory mapping methods for birds in four different habitats[J]. Journal of Ornithology, 152(2): 421-429. doi: 10.1007/s10336-010-0601-1 [41] Greig-Smith P W, 1980. Ranging behaviour of birds in savanna and riverine forest habitats in ghana[J]. Ibis, 122(1): 109-116. doi: 10.1111/j.1474-919x.1980.tb00879.x [42] Howell C A, Porneluzi P A, Clawson R L, et al, 2004. Breeding density affects point-count accuracy in missouri forest birds[J]. Journal of Field Ornithology, 75(2): 123-133. doi: 10.1648/0273-8570-75.2.123 [43] Hu W Z, Wu F, Gao J Y, et al, 2017. Influences of interpolation of species ranges on elevational species richness gradients[J]. Ecography, 40(10): 1231-1241. doi: 10.1111/ecog.02534 [44] Hua F, Wang X, Zheng X, et al, 2016. Opportunities for biodiversity gains under the world's largest reforestation programme[J]. Nature Communications, 7(1): 12711-12717. doi: 10.1038/ncomms12717 [45] Kotowska D, Skorka P, Walasz K, 2019. Delineating the number of animal territories using digital mapping and spatial hierarchical clustering in gis technology[J]. Ecological Indicators, 107: 105670. doi: 10.1016/j.ecolind.2019.105670 [46] Li S, Mcshea W J, Wang D, et al, 2010. The use of infrared-triggered cameras for surveying phasianids in Sichuan Province, China[J]. Ibis, 152(2): 299-309. doi: 10.1111/j.1474-919x.2009.00989.x [47] Li Z Y, Zhang H, Xu Y J, et al, 2021. Composition of ‘fast–slow’ traits drives avian community stability over North America[J]. Functional Ecology, 35(12): 2831-2840. doi: 10.1111/1365-2435.13909 [48] Lin C W, Hsu F H, Ding T S, 2011. Applying a territory mapping method to census the breeding bird community composition in a montane forest of Taiwan[J]. Taiwan Journal of Forest Science, 26(3): 267-285. [49] Macarthur R H, Macarthur A T, 1974. On the use of mist nets for population studies of birds[J]. Proceedings of the National Academy of Sciences of the United States of America, 71(8): 3230-3233. doi: 10.1073/pnas.71.8.3230 [50] Mosher J A, Fuller M R, Kopeny M, 1990. Surveying woodland raptors by broadcast of conspecific vocalizations[J]. Journal of Field Ornithology, 61(4): 453-461. [51] Qian F W, Jiang H X, Yu G H, et al, 2012. Survey of breeding populations of the Red-Crowned Crane (Grus japonensis) in the Songnen Plain, northeastern China[J]. Chinese Birds, 3(03): 217-224. doi: 10.5122/cbirds.2012.0028 [52] Ratcliffe N, Vaughan D, Whyte C, et al, 1998. Development of playback census methods for Storm Petrels Hydrobates pelagicus[J]. Bird Study, 45(3): 302-312. doi: 10.1080/00063659809461101 [53] Shen Y, Holyark M, Goodale E, et al, 2022. Mixed-species bird flocks re-assemble interspecific associations across an elevational gradient[J]. Proceedings of the Royal Society B, 289(1989): 20221840. doi: 10.1098/rspb.2022.1840 [54] Si X F, Pimm S L, Russell G J, et al, 2014. Turnover of breeding bird communities on islands in an inundated lake[J]. Journal of Biogeography, 41(12): 2283-2292. doi: 10.1111/jbi.12379 [55] Si X F, Cadotte M W, Zeng D, et al, 2017. Functional and phylogenetic structure of island bird communities[J]. The Journal of Animal Ecology, 86(3): 532-542. doi: 10.1111/1365-2656.12650 [56] Spotswood E N, Goodman K R, Carlisle J, et al, 2012. How safe is mist netting? Evaluating the risk of injury and mortality to birds[J]. Methods in Ecology and Evolution, 3(1): 29-38. doi: 10.1111/j.2041-210x.2011.00123.x [57] Sueur J, Pavoine S, Hamerlynck O, et al, 2008. Rapid acoustic survey for biodiversity appraisal[J]. PLoS ONE, 3(12): e4065. doi: 10.1371/journal.pone.0004065 [58] Wang R X, Wu F, Chang Y Y, et al, 2016. Waterbirds and their habitat utilization of artificial wetlands at Dianchi Lake: implication for waterbird conservation in Yunnan–Guizhou Plateau Lakes[J]. Wetlands, 36(6): 1087-1095. doi: 10.1007/s13157-016-0823-y [59] Wang Y P, Bao Y X, Yu M J, et al, 2010. Nestedness for different reasons: the distributions of birds, lizards and small mammals on islands of an inundated lake[J]. Diversity and Distributions, 16(5): 862-873. doi: 10.1111/j.1472-4642.2010.00682.x [60] Wang Y P, Zhang M, Wang S Y, et al, 2012. No evidence for the small-island effect in avian communities on islands of an inundated lake[J]. Oikos, 121(12): 1945-1952. doi: 10.1111/j.1600-0706.2012.20322.x [61] Williams A B, 1936. The composition and dynamics of a beech-maple climax community[J]. Ecological Monographs, 6(3): 317-408. doi: 10.2307/1943219 [62] Wilson R R, Twedt D J, Elliott A B, 2000. Comparison of line transects and point counts for monitoring spring migration in forested wetlands[J]. Journal of Field Ornithology, 71(2): 345-355. doi: 10.1648/0273-8570-71.2.345 [63] Wu F, Yang X J, Yang J X, 2010. Additive diversity partitioning as a guide to regional montane reserve design in Asia: an example from Yunnan Province, China[J]. Diversity and Distributions, 16(6): 1022-1033. doi: 10.1111/j.1472-4642.2010.00710.x [64] Zhang Q, Han R, Zou F, 2011. Effects of artificial afforestation and successional stage on a lowland forest bird community in southern China[J]. Forest Ecology and Management, 261(11): 1738-1749. doi: 10.1016/j.foreco.2011.01.025 [65] Zhang Q, Han R, Huang Z, et al, 2013. Linking vegetation structure and bird organization: response of mixed-species bird flocks to forest succession in subtropical China[J]. Biodiversity and Conservation, 22(9): 1965-1989. doi: 10.1007/s10531-013-0521-5 [66] Zhang Q, Wu J, Sun Y, et al, 2015. Do bird assemblages predict susceptibility by e-waste pollution? A comparative study based on species- and guild-dependent responses in China agroecosystems[J]. PLoS ONE, 10(3): e122264. doi: 10.1371/journal.pone.0122264 [67] Zhang Q, Hong Y, Zou F, et al, 2016. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications[J]. Scientific Reports, 6(1): 22344. doi: 10.1038/srep22344 [68] Zhang Q, Holyoak M, Chen C, et al, 2020a. Trait-mediated filtering drives contrasting patterns of species richness and functional diversity across montane bird assemblages[J]. Journal of Biogeography, 47(1): 301-312. doi: 10.1111/jbi.13738 [69] Zhang Q, Holyoak M, Goodale E, et al, 2020b. Trait-environment relationships differ between mixed-species flocking and nonflocking bird assemblages[J]. Ecology, 101(10): e3124. doi: 10.1002/ecy.3124 -