Effects of Composted Sewage Sudge on Polar Biomass and Soil Microorganism Characteristics
-
摘要:
目的 采用田間實驗研究施用堆肥污泥對楊樹生物量、土壤理化性質及土壤微生物特性的影響,以期為合理利用堆肥污泥提供科學依據。 方法 通過2年田間實驗,研究不同堆肥污泥施用量(對照CK、 低量LS、中量MS和高量HS)對植物生物量和土壤的營養成分、重金屬含量、微生物生物量碳(MBC)、微生物數量、微生物功能多樣性的影響。 結果 施用堆肥污泥明顯改善土壤營養成分,其中土壤有機碳、有效氮、全氮、全磷含量平均增幅為0.8~2.3倍;堆肥污泥施用亦增加土壤重金屬含量,但基本可控。堆肥污泥施用對土壤MBC、微生物數量和群落功能多樣性均產生積極影響,尤其土壤MBC和微生物數量平均增幅分別為37.5%~65.7%和32.5%~183.9%。堆肥污泥施用提高楊樹地上、根系和整株生物量,平均增幅為38.3%~89.3%。 結論 施用堆肥污泥不僅能改善土壤理化性質和微生物環境,而且能提高楊樹的生物量,堆肥污泥每年最佳用量為15 t/hm2。 Abstract:Objective In this study, a field trial was conducted to determine the poplar biomass, the physico-chemical properties and microorganism characteristics in soil amended with composted sewage sludge (CSS), in order to provide the scientific basis for the circulation of CSS. Method Two-year field trial was conducted to determine the effects of different amounts of CSS on the plant biomass and the soil nutrients, heavy metal contents, microbial biomass carbon (MBC), microbial population, microbial functional diversity. Soil was amended with one of four CSS treatments in both study years: control, LS, MS, and HS. Result The application of CSS significantly improved the soil nutrients, and the soil organic carbon, available N, total N and total P contents increased by 0.8~2.3 times on average. The CSS application also increased the heavy metal contents in soil, but the heavy metal pollution was controllable. The CSS application had positive effects on the soil MBC, microbial population and community functional diversity, especially the soil MBC and microbial population. In particular, the soil MBC and microbial population increased by 37.5%~65.7% and 32.5%~183.9%, respectively. The CSS application increased the aboveground, root and whole plant biomass of poplar with an average increase of 38.3% to 89.3%. Conclusion In summary, the application of CSS not only improves the soil physico-chemical properties and microbial environment, but also promotes the plant biomass. And the optimal amount of CSS is 15 t/hm2 per year. -
Key words:
- composted sewage sludge /
- soil nutrient /
- heavy metals /
- biomass
-
表 1 供試土壤(TS)及堆肥污泥(CSS)的理化特性及金屬含量
Table 1. Physico-chemical properties and metal concentrations of tested soil (TS) and composted sewage sludge (CSS)
項目
ItemsSOC/
(g·kg?1)pH AN/
(mg·kg?1)N/
(g·kg?1)P/
(g·kg?1)K/
(g·kg?1)Ca/
(g·kg?1)TS 13.1 (0.4) 7.8 (0) 166.5 (5.7) 1.6 (0.1) 0.9 (0) 1.2 (0) 7.0 (0.3) CSS 2012 170.7 (0.2) 7.4 (0) 2674.6 (13.7) 13.6 (0.1) 17.9 (0) 2.3 (0.1) 37.8 (0.1) CSS 2013 175.6 (0.2) 6.8 (0) 3356.6 (27.3) 18.7 (0.1) 22.7 (0.2) 3.0 (0) 115.4 (0.2) 項目
ItemsCu/
(mg·kg?1)Mn/
(mg·kg?1)Cr/
(mg·kg?1)Zn/
(mg·kg?1)Cd/
(mg·kg?1)Hg/
(mg·kg?1)Pb/
(mg·kg?1)TS 13.2 (0.5) 276.5 (3.0) 43.6 (0.3) 60.5 (2.4) 1.7 (0) 0.5 (0) 18.7 (0.4) CSS 2012 135.2 (4.4) 1521.3 (13.5) 130.1 (5.5) 755.0 (9.3) 2.6 (0.1) 7.1 (0.1) 70.5 (0.3) CSS 2013 241.9 (0.8) 941.8 (2.0) 150.0 (0.6) 865.4 (1.6) 3.0 (0) 18.4 (0) 67.9 (0.1) 項目
ItemsFe/
(g·kg?1)Mg/
(g·kg?1)Na/
(mg·kg?1)Ni/
(mg·kg?1)As/
(mg·kg?1)S/
(mg·kg?1)TS 19.1 (0.2) 5.9 (0.2) 261.6 (11.5) 21.0 (0.4) 6.6 (0.1) 261.9 (17.9) CSS 2012 25.1 (0.3) 15.6 (0.1) 1042.2 (29.4) 372.8 (6.8) 10.4 (0.1) 4561.7 (51.6) CSS 2013 22.4 (0) 15.1 (0) 1270.1 (1.2) 120.0 (0.6) 5.4 (0) 5323.3 (33.0) 注:結果為3個重復測定值的平均值(標準誤),以干基表示。Means of three replicates (standard error of the mean) on a dry matter basis. 土壤有機碳:Soil organic carbon (SOC);有效氮:Available nitrogen (AN)。 表 2 土壤酸堿度、有機碳、有效氮和大量營養元素
Table 2. The pH, organic carbon, available nitrogen and macronutrients in soil
年份
Year月份
Month處理
TreatmentspH SOC/
(g·kg?1)AN/
(mg·kg?1)N/
(g·kg?1)P/
(g·kg?1)K/
(g·kg?1)2012 7月
JulyCK 7.61 (0.03) a 12.3 (0.2) d 105.9 (2.0) c 1.28 (0.10) d 0.85 (0) d 1.18 (0) c LS 6.99 (0.04) b 16.5 (0.8) c 130.6 (5.8) c 1.72 (0.09) c 1.07 (0.07) c 1.24 (0.02) c MS 6.86 (0.05) c 22.3 (0.6) b 176.6 (11.9) b 2.51 (0.13) b 2.46 (0.07) b 1.40 (0.03) b HS 6.51 (0.04) d 44.3 (0.3) a 254.1 (11.7) a 3.55 (0.11) a 4.21 (0.05) a 1.51 (0.03) a 9月
Sept.CK 7.77 (0.05) a 11.4 (0.2) d 97.6 (1.2) c 1.18 (0.02) c 0.80 (0) d 1.07 (0.01) c LS 7.63 (0.03) b 13.8 (0.2) c 115.5 (4.1) b 1.46 (0.03) b 1.05 (0.01) c 1.18 (0.02) b MS 7.61 (0.01) b 17.8 (0.5) b 121.3 (5.6) b 1.69 (0.06) b 1.40 (0.03) b 1.36 (0.01) a HS 7.60 (0.05) b 20.3 (0.5) a 149.6 (5.6) a 2.10 (0.14) a 1.81 (0.06) a 1.33 (0.01) a 2013 7月
JulyCK 7.83 (0.04) a 5.4 (0.3) d 117.7 (3.2) d 1.05 (0.03) c 0.91 (0.01) d 1.38 (0.02) b LS 7.72 (0.04) b 17.3 (0.3) c 166.2 (5.0) c 2.39 (0.19) b 2.59 (0.10) c 1.47 (0.02) a MS 7.52 (0.01) c 38.3 (1.7) a 202.5 (6.5) b 3.49 (0.13) a 3.97 (0.17) b 1.42 (0.02) ab HS 7.50 (0.04) c 34.0 (1.5) b 225.1 (4.3) a 3.54 (0.07) a 4.47 (0.09) a 1.39 (0) b 9月
Sept.CK 7.89 (0.02) a 11.5 (0.3) d 59.5 (1.3) d 1.04 (0.02) d 0.86 (0.02) d 1.61 (0.03) c LS 7.77 (0.02) b 19.7 (0.7) c 118.0 (3.3) c 2.20 (0.07) c 2.54 (0.07) c 2.07 (0.01) a MS 7.66 (0.04) c 27.0 (1.3) b 133.6 (3.9) b 2.59 (0.09) b 2.84 (0.08) b 2.10 (0.06) a HS 7.41 (0.03) d 42.9 (2.2) a 186.8 (4.9) a 4.38 (0.06) a 6.21 (0.09) a 1.84 (0.05) b 注:結果為3個重復測定值的平均值(標準誤),以干基表示。不同小寫字母表示處理間差異顯著(P<0.05)。下同。Means of three replicates (standard error of the mean) on a dry matter basis. Different letters indicate significant difference between treatments (P<0.05). The same below. 表 3 土壤微生物生物量碳
Table 3. The contents of microbial biomass carbon (MBC) in soil
單位 Unit:mg·kg?1 處理
Treatments2012.7
July-20122012.9
Sept.-20122013.7
July-20132013.9
Sept.-2013CK 118.6 (3.0) d 171.1 (0.4) b 117.6 (6.7) c 122.3 (1.2) d LS 160.9 (6.4) c 176.8 (4.6) b 214.1 (5.2) ab 157.6 (3.4) c MS 195.3 (5.2) b 195.7 (1.7) a 218.8 (4.2) a 196.2 (4.3) b HS 229.0 (6.1) a 175.8 (4.8) b 202.0 (2.8) b 238.8 (6.2) a 表 4 一元回歸和逐步多元線性回歸分析的統計關系(R2)
Table 4. The statistical relationships (R2) using the unitary regression and stepwise multiple linear regression (SMLR)
項目
Items有機碳
SOC微生物商
MQa堆肥污泥處理
CSS treatments顯著性變量(逐步多元線性回歸)
Significant variables using SMLRb微生物生物量碳 MBC 0.704*** 0.507** 0.594* 0.703***c 放線菌 Actinomyces 0.301* 0.331* 0.676** 0.727***d 真菌 Fungi 0.362** 0.265* — 0.381**e 細菌 Bacteria — — — 0.887***f 香農指數 Shannon index (H′) — 0.243* 0.597* 0.668***g 整株生物量 Biomass — 0.616* — 0.937***h 注:a微生物商 Microbial quotient (MQ);b逐步多元線性回歸涉及的土壤變量即:SOC、AN、N、P、K、As、Hg、Cd、Cr、Cu、Ni、Pb、Zn、pH、MBC、細菌、放線菌、真菌、香農指數。SMLR considering the soil variables for: SOC, AN, N, P, K, As, Hg, Cd, Cr, Cu, Ni, Pb, Zn, pH, MBC, bacteria, actinomyces, fungi, Shannon index. c土壤氮 Soil N;d土壤鉀和鉻 Soil K and Cr;e土壤有效氮 Soil available nitrogen;f土壤砷 Soil As;g土壤pH Soil pH;h土壤鉀 Soil K;—:不顯著 Not significant (P > 0.05),*P < 0.05,**P < 0.01,***P < 0.001。 屌“啊……慢点…肏 -
[1] 鮑士旦, 2000. 土壤農化分析[M]. 3版. 北京: 中國農業出版社, 30-110. [2] 丁超群, 白莉萍, 齊洪濤, 2022. 堆肥污泥施用于楊樹后土壤理化性質及土壤污染風險[J]. 環境工程學報, 16(7): 2381-2387. doi: 10.12030/j.cjee.202111145 [3] 丁洪, 余居華, 鄭祥洲, 等, 2021. 中國城市污泥應用對作物產量、品質和土壤質量的影響[J]. 生態環境學報, 30(9): 1933-1942. doi: 10.16258/j.cnki.1674-5906.2021.09.018 [4] 柯杰, 胡惠秩, 盧進登, 等, 2019. 污泥處理新技術研究現狀及其發展趨勢[J]. 環境科學與管理, 44(4): 92-96. doi: 10.3969/j.issn.1673-1212.2019.04.020 [5] 李阜棣, 喻子牛, 何紹江, 1996. 農業微生物學實驗技術[M]. 北京: 中國農業出版社, 32-36. [6] 劉夢嬌, 夏少攀, 王峻, 等, 2017. 城市污泥農用對植物-土壤系統的影響[J]. 應用生態學報, 28(12): 4134-4142. doi: 10.13287/j.1001-9332.201712.035 [7] 馬學文, 翁煥新, 章金駿, 2011. 中國城市污泥重金屬和養分的區域特性及變化[J]. 中國環境科學, 31(8): 1306-1313. [8] 生態環境部, 國家市場監督管理總局, 2018. 土壤環境質量 農用地土壤污染風險管控標準(試行): GB 15618-2018[S]. 北京: 中國環境出版集團. [9] 史亞平, 于海洋, 宋開付, 等, 2018. 施用城市污泥堆肥對稻田溫室氣體排放及重金屬含量的影響[J]. 生態環境學報, 27(12): 2352-2359. doi: 10.16258/j.cnki.1674-5906.2018.12.023 [10] 童彤, 紀榮婷, 許秋瑾, 等, 2022. 活性污泥萃取液的安全性及對水稻苗期生長和土壤環境的影響[J]. 環境科學研究, 35(11): 2568-2577. doi: 10.13198/j.issn.1001-6929.2022.09.08 [11] 王超, 劉清偉, 職音, 等, 2019. 中國市政污泥中磷的含量與形態分布[J]. 環境科學, 40(4): 1922-1930. doi: 10.13227/j.hjkx.201809078 [12] 楊丹, 李冕, 馮夢芹, 2020. 喀斯特石漠化土壤中施用城市污泥的環境影響分析[J]. 環境污染與防治, 42(1): 74-78. doi: 10.15985/j.cnki.1001-3865.2020.01.015 [13] 楊桐桐, 封莉, 張立秋, 2017. 城市污泥堆肥產品施用對沙荒地土壤理化性質及高羊茅生長的影響[J]. 環境工程學報, 11(4): 2462-2468. doi: 10.12030/j.cjee.201601074 [14] 占婷婷, 李淵, 石輝, 等, 2019. 市政污泥直接施用對玉米生長和品質的影響[J]. 水土保持通報, 39(5): 172-178. doi: 10.13961/j.cnki.stbctb.2019.05.024 [15] 張向營, 2018. 市政污水廠污泥處置技術探討[J]. 廣東化工, 45(1): 146-147. doi: 10.3969/j.issn.1007-1865.2018.01.070 [16] 周金倩, 馬建立, 張良運, 等, 2018. 干化污泥對鹽堿土土壤性能及植物生長的影響[J]. 環境工程技術學報, 8(4): 443-448. [17] 周玲莉, 姚斌, 向仰州, 等, 2010. 五氯酚脅迫對楊樹生長及根際微生物群落的響應特征[J]. 林業科學, 46(10): 62-68. doi: 10.11707/j.1001-7488.20101010 [18] Arif M S, Riaz M, Shahzad S M, et al, 2018. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land[J]. Science of the Total Environment, 619/620: 517-527. doi: 10.1016/j.scitotenv.2017.11.143 [19] Asensio V, Covelo E F, Kandeler E, 2013. Soil management of copper mine tailing soils-Sludge amendment and tree vegetation could improve biological soil quality[J]. Science of the Total Environment, 456/457: 82-90. doi: 10.1016/j.scitotenv.2013.03.061 [20] Bai Y C, Zang C Y, Gu M J, et al, 2017. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils[J]. Science of the Total Environment, 578: 47-55. doi: 10.1016/j.scitotenv.2016.06.083 [21] Belhaj D, Elloumi N, Jerbi B, et al, 2016. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus)[J]. Environmental Science and Pollution Research, 23(20): 20168-20177. doi: 10.1007/s11356-016-7193-0 [22] B?rjesson G, Kirchmann H, K?tterer T, 2014. Four Swedish long-term field experiments with sewage sludgereveal a limited effect on soil microbes and on metal uptake by crops[J]. Journal of Soils and Sediments, 14(1): 164-177. doi: 10.1007/s11368-013-0800-5 [23] Carmo J B, de Urzedo D I, Filho P J F, et al, 2014. CO2 emission from soil after reforestation and application of sewage sludge[J]. Bragantia, 73(3): 312-318. doi: 10.1590/1678-4499.0093 [24] Chinault S L, O’Connor G A, 2008. Phosphorus release from a biosolids-amended sandy spodosol[J]. Journal of Environmental Quality, 37(3): 937-943. doi: 10.2134/jeq2007.0139 [25] Faria W M, de Figueiredo C C, Coser T R, et al, 2018. Is sewage sludge biochar capable of replacing inorganic fertilizers for corn production? Evidence from a two-year field experiment[J]. Archives of Agronomy and Soil Science, 64(4): 505-519. doi: 10.1080/03650340.2017.1360488 [26] Hemmat A, Aghilinategh N, Rezainejad Y, et al, 2010. Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran[J]. Soil and Tillage Research, 108(1/2): 43-50. doi: 10.1016/j.still.2010.03.007 [27] Jenkinson D S, Brookes P C, Powlson D S, 2004. Measuring soil microbial biomass[J]. Soil Biology and Biochemistry, 36(1): 5-7. doi: 10.1016/j.soilbio.2003.10.002 [28] Kela P W, Jason A G, Matthias G, et al, 2007. Data transformations in the analysis of community-level substrate utilization data from microplates[J]. Journal of Microbiological Methods, 69(3): 461-469. doi: 10.1016/j.mimet.2007.02.013 [29] Kidd P S, Domínguez-Rodríguez M J, Díez J, et al, 2007. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge[J]. Chemosphere, 66(8): 1458-1467. doi: 10.1016/j.chemosphere.2006.09.007 [30] Kubátová P, Hejcman M, Száková J, et al, 2016. Effects of sewage sludge application on biomass production and concentrations of Cd, Pb and Zn in shoots of Salix and Populus clones: improvement of phytoremediation efficiency in contaminated soils[J]. Bioenergy Research, 9(3): 809-819. doi: 10.1007/s12155-016-9727-1 [31] Latare A M, Kumar O, Singh S K, et al, 2014. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system[J]. Ecological Engineering, 69: 17-24. doi: 10.1016/j.ecoleng.2014.03.066 [32] Lombard K, O’Neill M, Heyduck R, et al, 2011. Composted biosolids as a source of iron for hybrid poplars (Populus sp.) grown in northwest New Mexico[J]. Agroforestry Systems, 81: 45-56. doi: 10.1007/s10457-010-9334-7 [33] Maguire R O, Sims J T, Coale F J, et al, 2000. Phosphorus fractionation in biosolids-amended soils: relationship to soluble and desorbable phosphorus[J]. Soil Science Society of America Journal, 64(6): 2018-2024. doi: 10.2136/sssaj2000.6462018x [34] Oliver I W, McLaughlin M J, Merrington G, 2005. Temporal trends of total and potentially available element concentrations in sewage biosolids: a comparison of biosolid surveys conducted 18 years apart[J]. Science of the Total Environment, 337(1/3): 139-145. doi: 10.1016/j.scitotenv.2004.07.003 [35] Poulsen P H B, Magid J, Luxh?i J, et al, 2013. Effects of fertilization with urban and agricultural organic wastes in a field trial: waste imprint on soil microbial activity[J]. Soil Biology and Biochemistry, 57: 794-802. doi: 10.1016/j.soilbio.2012.02.031 [36] Ramlal E, Yemshanov D, Fox G, et al, 2009. A bioeconomic model of afforestation in Southern Ontario: integration of fiber, carbon and municipal biosolids values[J]. Journal of Environmental Management, 90(5): 1833-1843. doi: 10.1016/j.jenvman.2008.11.029 [37] Shober A L, Sims J T, 2003. Phosphorus restrictions for land application of biosolids: current status and future trends[J]. Journal of Environmental Quality, 32(6): 1955-1964. doi: 10.2134/jeq2003.1955 [38] Vitousek P M, Porder S, Houlton B Z, et al, 2010. Terrestrial phosphorus limitation: mechanisms implication and nitrogen-phosphorus interactions[J]. Ecological Applications, 20(1): 5-15. doi: 10.1890/08-0127.1 [39] Wu J, Joergensen R G, Pommerening B, et al, 1990. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J]. Soil Biology and Biochemistry, 22(8): 1167-1169. doi: 10.1016/0038-0717(90)90046-3 [40] Xu G Q, Cao X Q, Bai L P, et al, 2019. Absorption, accumulation and distribution of metals and nutrient elements in poplars planted in land amended with composted sewage sludge: a field trial[J]. Ecotoxicology and Environmental Safety, 182(1): 109360. doi: 10.1016/j.ecoenv.2019.06.043 [41] Zak J C, Willig M R, Moorhead D L, et al, 1994. Functional diversity of microbial communities: a quantitative approach[J]. Soil Biology and Biochemistry, 26(9): 1101-1108. doi: 10.1016/0038-0717(94)90131-7 -