Effects of Different Forest Restoration Methods on Soil Aggregate Stability in the Subalpine of Western Sichuan
-
摘要:
目的 研究川西亞高山不同森林恢復方式對土壤團聚體穩定性的影響,為退化森林的適應性恢復和可持續經營提供科學依據。 方法 選取川西亞高山不同恢復方式下的3種森林類型,即岷江冷杉?紅樺次生林(自然恢復,SF)、云杉闊葉混交林(人工種植后自然恢復,MF)和云杉人工林(人工恢復,PF),采用干篩法測定了6個粒級(>5、2~5、1~2、0.5~1、0.25~0.5和<0.25 mm)土壤團聚體的分布特征,計算平均重量直徑(MWD)、幾何平均直徑(GMD)、大于0.25 mm團聚體含量(R>0.25)和土壤可蝕性因子(K)等團聚體穩定性參數,探究不同森林恢復方式對土壤團聚體穩定性的影響。 結果 研究發現,SF和MF的團聚體分布以>2 mm團聚體為優勢粒級,而PF的團聚體在各粒級分布較均勻。不同恢復方式對土壤團聚體穩定性參數(MWD、R >0.25、K)影響差異顯著(P<0.05),其中SF和MF的土壤MWD和R>0.25均高于PF,而土壤可蝕性因子K低于PF。不同恢復方式的土壤團聚體穩定性與土壤有機碳、全氮含量和碳氮比及細根周轉率顯著相關,且細根周轉率能解釋超30%的土壤團聚體穩定性變異,說明森林恢復方式對土壤團聚體穩定性的影響與土壤有機質的周轉過程密切相關。 結論 主要受不同森林的細根周轉差異對土壤有機碳輸入的影響,自然恢復形成的混交林較人工種植的針葉純林更有利于土壤團聚體的穩定。因此,在川西亞高山地區退化森林恢復中,宜采用自然恢復或營建混交林的方式,有利于土壤結構的穩定。 Abstract:Objective The effects of different forest restoration methods on the stability of soil aggregate in subalpine area of western Sichuan were studied to provide scientific reference for adaptive restoration and sustainable management of degraded forests. Methods Three forest types, namely, the Abies fargesii var. faxoniana-Betula albosinensis secondary forest (natural restoration, SF), the Picea asperata broadleaved mixed forest (natural restoration after artificial planting, MF) and the P. asperata plantated forest (artificial restoration, PF) were selected under different restoration methods in the subalpine of western Sichuan. The effects of restoration methods on the stability of soil aggregate were evaluated through the aggregate stability parameters, i.e., mean weight diameter (MWD), geometric mean diameter (GMD), >0.25 mm soil aggregate content (R>0.25) and soil erodibility factor (K), which were calculated based on the distribution characteristics of six soil particle sizes (>5, 2~5, 1~2, 0.5~1, 0.25~0.5 and <0.25 mm), obtaining with the dry-sieving procedure. Results The aggregate distributions of SF and MF were found to be dominated by >2 mm aggregates, while the aggregate distribution of PF was evenly among the soil particle sizes. Restoration methods had a significant effect on the soil aggregate stability parameters (MWD, R >0.25, K) (P<0.05). Soil MWD and R>0.25 were higher, but soil erodibility factor (K) was lower in SF and MF than in PF. The stability of soil aggregate was significantly correlated with soil organic carbon, total nitrogen, C/N ratio and fine root turnover rate. Fine root turnover rate could explain more than 30% of the variation of soil aggregate stability, indicating that the effects of forest restoration methods on soil aggregate stability were closely related to the turnover process of soil organic matter. Conclusion The mixed forest formed by natural restoration had higher soil aggregate stability than the artificial pure forest, mainly affecting by the turnover of fine roots on soil organic carbon input. Therefore, natural restoration or construction of mixed forests should be adopted from the perspective of stabilizing soil structure in restoration of degraded forests in the subalpine of western Sichuan. -
Key words:
- soil aggregate stability /
- forest soil /
- restoration methods /
- subalpine
-
圖 1 森林恢復方式對土壤團聚體分布的影響
注:SF、MF和PF分別代表岷江冷杉?紅樺次生林、云杉闊葉混交林和云杉人工林。下同。SF, MF and PF indicate Abies fargesii var. faxoniana-Betula albosinensis secondary forest, Picea asperata broadleaved mixed forest and P. asperata plantated forest, respectively. The same below.
Figure 1. Effect of forest restoration on the distribution of soil aggregate
表 1 森林恢復方式、土層深度及其交互作用對土壤團聚體穩定性影響的方差分析
Table 1. Two-way ANOVA analysis of forest restoration, soil depth and their interaction on soil aggregate stability
變異來源
Source因變量
Dependent variable自由度
Degree of freedomF值
F valueP值
P value森林恢復方式
Forest restoration (FR)MWD 2 11.49 <0.001 GMD 2 2.53 0.101 R>0.25 2 18.36 <0.001 K 2 5.39 0.012 土層深度
Soil depth (SD)MWD 1 7.51 0.011 GMD 1 13.11 0.001 R>0.25 1 4.33 0.048 K 1 19.53 <0.001 森林恢復方式×土層深度
FR × SDMWD 2 2.19 0.134 GMD 2 1.57 0.228 R>0.25 2 4.07 0.030 K 2 2.16 0.138 表 2 不同森林恢復方式土壤團聚體穩定性與土壤理化性質的Pearson相關性
Table 2. Pearson correlation coefficients and significance between soil aggregate stability and soil properties of different forest restoration
變量
Variable平均重量直徑
MWD幾何平均直徑
GMD大于 0.25 mm團聚體
含量 R>0.25土壤可蝕性
因子 K容重
BD有機碳
SOC全氮
TN碳氮比
C/N平均重量直徑 MWD 1 0.635** 0.809** ?0.741** 0.019 0.522** 0.530** ?0.576** 幾何平均直徑 GMD 0.635** 1 0.551** ?0.912** ?0.071 0.469** 0.460* ?0.366* 大于 0.25 mm團
聚體含量 R>0.250.809** 0.551** 1 ?0.748** 0.343 0.424* 0.488** ?0.671** 土壤可蝕性因子 K ?0.741** ?0.912** ?0.748** 1 ?0.024 ?0.570** ?0.591** 0.563** 注:*和**分別表示在P<0.05和P<0.01水平上顯著相關。下同。* and ** indicate significant correlated at P<0.05 and P<0.01, respectively. The same below. 表 3 不同森林恢復方式土壤團聚體穩定性與細根參數的Pearson相關性
Table 3. Pearson correlation coefficients and significance between soil aggregate stability and fine root characteristic of different forest restoration
變量
Variable活細根生物量
FRB死細根生物量
FRN活細根/死細根生物量
FRB/FRN細根生產量
FRP細根周轉率
FRT平均重量直徑 MWD 0.153 0.416* ?0.177 0.394* 0.678** 幾何平均直徑 GMD 0.275 0.454* 0.013 0.486** 0.598** 大于 0.25 mm團聚體含量 R>0.25 ?0.052 0.162 ?0.295 0.212 0.712** 土壤可蝕性因子 K ?0.286 ?0.467** ?0.007 ?0.530** ?0.720** 表 4 土壤團聚體穩定性的多元回歸分析模型
Table 4. Multiple regression analysis model of soil aggregate stability
因變量
Dependent variable方程
Equation自變量
Independent variable解釋度
Contribution/%調整后R2
Adjusted R2P值
P value平均重量直徑 MWD Y=1.811XFRT?0.055XC/N+2.260 細根周轉率 FRT 44.0 0.503 0.04 碳氮比 C/N 6.3 幾何平均直徑 GMD Y=1.851XFRT+0.426 細根周轉率 FRT 33.5 0.335 <0.01 大于 0.25 mm團聚體
含量 R>0.25Y=46.155XFRT?4.555XC/N+1.478XSOC
?30.339XTN+146.824細根周轉率 FRT 48.9 0.755 <0.01 碳氮比 C/N 12.7 有機碳 SOC 9.5 全氮 TN 4.4 土壤可蝕性因子 K Y=?0.017XFRT+0.036 細根周轉率 FRT 50.1 0.501 <0.01 屌“啊……慢点…肏 -
[1] 鮑士旦, 2000. 土壤農化分析[M]. 3版. 北京: 中國農業出版社. [2] 蔡琳, 楊予靜, 種玉潔, 等, 2023. 亞熱帶退化森林不同恢復方式對土壤團聚體膠結物質及穩定性的影響[J]. 生態學報, 43(9): 3689-3698. doi: 10.5846/stxb202204211092 [3] 陳健, 劉順, 史作民, 等, 2021. 川西亞高山三種森林恢復途徑對土壤生物有效磷的影響[J]. 生態學報, 41(7): 2698-2708. doi: 10.5846/stxb202005271368 [4] 陳莉莉, 袁志友, 穆興民, 等, 2015. 森林細根生產力研究進展[J]. 西北林學院學報, 30(3): 70-75+80. doi: 10.3969/j.issn.1001-7461.2015.03.13 [5] 陳曉霞, 包維凱, 何其華, 等, 2021. 2005—2015年不同恢復途徑下川西亞高山森林喬木層群落動態變化[J]. 生態學雜志, 40(5): 1253-1263. doi: 10.13292/j.1000-4890.202105.020 [6] 胡慧, 包維楷, 李芳蘭, 2020. 岷江上游4個栽培樹種細根功能性狀垂直分布的差異性[J]. 生態學雜志, 39(1): 46-56. doi: 10.13292/j.1000-4890.202001.013 [7] 黃水珍, 王晟強, 葉紹明, 2020. 杉木林分類型對表層土壤團聚體有機碳及養分變化的影響[J]. 應用生態學報, 31(9): 2857-2865. doi: 10.13287/j.1001-9332.202009.003 [8] 劉世榮, 馬姜明, 繆寧, 2015. 中國天然林保護、生態恢復與可持續經營的理論與技術[J]. 生態學報, 35(1): 212-218. doi: 10.5846/stxb201411132245 [9] 劉艷, 馬茂華, 吳勝軍, 等, 2018. 干濕交替下土壤團聚體穩定性研究進展與展望[J]. 土壤, 50(5): 853-865. doi: 10.13758/j.cnki.tr.2018.05.001 [10] 劉順, 羅達, 劉千里, 等, 2017. 川西亞高山不同森林生態系統碳氮儲量及其分配格局[J]. 生態學報, 37(4): 1074-1083. doi: 10.5846/stxb201604150688 [11] 劉順, 楊洪國, 羅達, 等, 2019. 川西亞高山不同森林類型土壤呼吸和總硝化速率的季節動態[J]. 生態學報, 39(2): 550-560. doi: 10.5846/stxb201712122237 [12] 劉亞龍, 王萍, 汪景寬, 2023. 土壤團聚體的形成和穩定機制: 研究進展與展望[J]. 土壤學報, 60(3): 627-643. doi: 10.11766/trxb202112180686 [13] 龍啟霞, 藍家程, 姜勇祥, 2022. 生態恢復對石漠化地區土壤有機碳累積特征及其機制的影響[J]. 生態學報, 42(18): 7390-7402. doi: 10.5846/stxb202107131885 [14] 馬祥慶, 劉愛琴, 何智英, 等, 2000. 整地方式對杉木人工林生態系統的影響[J]. 山地學報, 18(3): 237-243. doi: 10.16089/j.cnki.1008-2786.2000.03.009 [15] 馬志良, 趙文強, 2020. 植物群落向土壤有機碳輸入及其對氣候變暖的響應研究進展[J]. 生態學雜志, 39(1): 270-281. doi: 10.13292/j.1000-4890.202001.009 [16] 彭陽, 白彥鋒, 徐睿, 等, 2016. 森林恢復定義及恢復后生態系統碳儲量變化分析[J]. 世界林業研究, 29(6): 43-47. doi: 10.13348/j.cnki.sjlyyj.2016.06.006 [17] 祁迎春, 王益權, 劉軍, 等, 2011. 不同土地利用方式土壤團聚體組成及幾種團聚體穩定性指標的比較[J]. 農業工程學報, 27(1): 340-347. doi: 10.3969/j.issn.1002-6819.2011.01.055 [18] 珊丹, 邢恩德, 榮浩, 等, 2019. 草原礦區排土場不同植被配置類型生態恢復[J]. 生態學雜志, 38(2): 336-342. doi: 10.13292/j.1000-4890.201902.019 [19] 童晨暉, 王輝, 譚帥, 等, 2022. 亞熱帶丘崗區經果林種植對紅壤團聚體穩定性的影響[J]. 應用生態學報, 33(4): 1012-1020. doi: 10.13287/j.1001-9332.202204.011 [20] 王冰, 張鵬杰, 張秋良, 2021. 不同林型興安落葉松林土壤團聚體及其有機碳特征[J]. 南京林業大學學報(自然科學版), 45(3): 15-24. doi: 10.12302/j.issn.1000-2006.202009067 [21] 王嬌, 關欣, 黃苛, 等, 2023. 酸雨和根系去除對杉木和火力楠人工林土壤有機碳的影響[J]. 應用生態學報, 34(4): 937-945. doi: 10.13287/j.1001-9332.202304.016 [22] 王龍鳳, 肖偉偉, 王樹力, 2022. 天然次生林人工管理后土壤團聚體穩定性及碳氮分布變化[J]. 北京林業大學學報, 44(7): 97-106. doi: 10.12171/j.1000-1522.20210497 [23] 王清奎, 汪思龍, 2005. 土壤團聚體形成與穩定機制及影響因素[J]. 土壤通報, 36(3): 415-421. doi: 10.19336/j.cnki.trtb.2005.03.031 [24] 王小紅, 楊智杰, 劉小飛, 等, 2014. 天然林轉換成人工林對土壤團聚體穩定性及有機碳分布的影響[J]. 水土保持學報, 28(6): 177-189. doi: 10.13870/j.cnki.stbcxb.2014.06.033 [25] 王心怡, 周聰, 馮文瀚, 等, 2019. 不同林齡杉木人工林土壤團聚體及其有機碳變化特征[J]. 水土保持學報, 33(5): 126-131. doi: 10.13870/j.cnki.stbcxb.2019.05.019 [26] 王志強, 劉英, 楊文亭, 等, 2018. 稻田復種輪作休耕對土壤團聚體分布及穩定性的影響[J]. 土壤學報, 55(5): 1143-1155. doi: 10.11766/trxb201712220590 [27] 肖盛楊, 舒英格, 2021. 土地利用方式對喀斯特峽谷區土壤水穩性團聚體的影響[J]. 灌溉排水學報, 40(4): 73-79. doi: 10.13522/j.cnki.ggps.2020600 [28] 楊倩, 朱大運, 陳靜, 等, 2022. 植被恢復模式對土壤團聚體和有機碳儲量的影響[J]. 森林與環境學報, 42(6): 631-639. doi: 10.13324/j.cnki.jfcf.2022.06.010 [29] 楊玉坡, 李承彪, 1992. 四川森林[M]. 北京: 中國林業出版社. [30] 張科利, 彭文英, 楊紅麗, 2007. 中國土壤可蝕性值及其估算[J]. 土壤學報, 44(1): 7-13. doi: 10.3321/j.issn:0564-3929.2007.01.002 [31] 張雷, 孫鵬森, 劉世榮, 2020. 川西亞高山森林不同恢復階段生長季蒸騰特征[J]. 林業科學, 56(1): 1-9. doi: 10.11707/j.1001-7488.20200101 [32] 張彧行, 翁白莎, 嚴登華, 2022. 基于文獻可視化分析的土壤團聚體研究進展[J]. 地理科學進展, 37(4): 429-438. doi: 10.11867/j.issn.1001-8166.2022.012 [33] 鄭華, 歐陽志云, 王效科, 等, 2004. 不同森林恢復類型對南方紅壤侵蝕區土壤質量的影響[J]. 生態學報, 24(9): 1994-2002. doi: 10.3321/j.issn:1000-0933.2004.09.023 [34] 鄭興波, 張雪, 韓士杰, 2019. 長白山闊葉紅松林不同演替階段土壤團聚體粒徑組成及有機碳含量變化[J]. 應用生態學報, 30(5): 1553-1562. doi: 10.13287/j.1001-9332.201905.009 [35] 朱家琪, 滿秀玲, 王飛, 2021. 寒溫帶4種森林類型土壤團聚體有機碳氮特征[J]. 南京林業大學學報(自然科學版), 45(5): 71-83. doi: 10.12302/j.issn.1000-2006.201912022 [36] 字洪標, 向澤宇, 王根緒, 等, 2017. 青海不同林分土壤微生物群落結構(PLFA)[J]. 林業科學, 53(3): 21-32. doi: 10.11707/j.1001-7488.20170303 [37] Argiroff W A, Zak D R, Upchurch R A, et al, 2019. Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots[J]. Global Change Biology, 25(12): 4369-4382. doi: 10.1111/gcb.14770 [38] Bearden B N, Petersen L, 2000. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol[J]. Plant and Soil, 218(1/2): 173-183. doi: 10.1023/A:1014923911324 [39] Bernard B, Eric R, 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 47(2): 133-149. doi: 10.1016/S0341-8162(01)00180-1 [40] Chaplot V, Cooper M, 2015. Soil aggregate stability to predict organic carbon outputs from soils[J]. Geoderma, 243-244: 205-213. doi: 10.1016/j.geoderma.2014.12.013 [41] Fitter A H, Atkinson D, Read D J, et al, 1985. Ecological interactions in soil: plants, microbes and animals[M]. Oxford, UK: Blackwell Scientific Publications. [42] Heather K, Brendan G M, David B L, et al, 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(28): 11635-11640. doi: 10.1073/pnas.0901970106 [43] He Y B, Xu C, Gu F, et al, 2018. Soil aggregate stability improves greatly in response to soil water dynamics under natural rains in long-term organic fertilization[J]. Soil and Tillage Research, 184: 281-290. doi: 10.1016/j.still.2018.08.008 [44] José M R B, Adrian C N, Anita D, et al, 2009. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis[J]. Science, 325(5944): 1121-1124. doi: 10.1126/science.1172460 [45] Liu S, Luo D, Yang H G, et al, 2018. Fine root dynamics in three forest types with different origins in a subalpine region of the eastern Qinghai-Tibetan Plateau[J]. Forests, 9(9): 517. doi: 10.3390/f9090517 [46] Ni X Y, Yang W Q, Li H, et al, 2014. The responses of early foliar litter humification to reduced snow cover during winter in an alpine forest[J]. Canadian Journal of Soil Science, 94(4): 453-461. doi: 10.4141/cjss2013-121 [47] Renato C, Mariana S F, Robin L C, et al, 2017. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests[J]. Science Advances, 3(11): 1701345. doi: 10.1126/sciadv.1701345 [48] Rillig M C, Muller L A, Lehmann A, 2017. Soil aggregates as massively concurrent evolutionary incubators[J]. The ISME Journal, 11(9): 1943-1948. doi: 10.1038/ismej.2017.56 [49] Six J, Elliott E T, Paustian K, 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 32(14): 2099-2103. doi: 10.1016/S0038-0717(00)00179-6 [50] Wang Y D, Wang Z L, Zhang Q Z, et al, 2018. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil[J]. Science of the Total Environment, 624: 1131-1139. doi: 10.1016/j.scitotenv.2017.12.113 [51] Wilson G W, Rice C W, Rillig M C, et al, 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments[J]. Ecology Letter, 12(5): 452-461. doi: 10.1111/j.1461-0248.2009.01303.x [52] Zou X M, Ruan H H, Fu Y, et al, 2005. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure[J]. Soil Biology and Biochemistry, 37(10): 1923-1928. doi: 10.1016/j.soilbio.2005.02.028 -