Plants Diversity of Fengshui Forests in Leizhou Peninsula, Guangdong Province
-
摘要:
目的 以雷州半島的10個風水林為研究對象,系統分析風水林群落的植物多樣性,探討風水林森林斑塊面積對物種存留的貢獻與影響。 方法 每個風水林建立1個40 m×40 m的樣地,分析群落α多樣性、β多樣性和森林斑塊面積對風水林植物多樣性的影響。 結果 1)雷州半島10個風水林中保存著190種植物。喬木層與草本層均由1個或若干優勢種與較多的稀有種組成;且均以出現頻次為1的物種豐富度比例最高,分別占其物種總豐富度的39.26%與48.48%。2)喬木層與草本層種的Jaccard相似性指數均值僅為31.29%與15.46%,Bray-Curtis相似性指數均值僅為25.62%與11.38%;喬木層與草本層間的物種Jaccard相似性指數與Bray-Curtis相似性指數僅為22.77%與12.12%。3)風水林斑塊面積與風水林植物多樣性保存水平無顯著相關關系,且森林斑塊面積對風水林植物喬木層與草本層植物多樣性組成的影響相對較小。 結論 雖然雷州半島風水林保存著豐富的植物,且風水林森林斑塊面積大小對其多樣性的影響相對較小,但因風水林呈現破碎化,林內大部分植物種類為稀有種,僅有部分種子轉化為幼苗,群落的穩定性與抗干擾性相對較弱。 Abstract:Objective Ten communities of Fengshui forests were studied to analyze the species diversity systematically, and to explore the contribution and impact of forests patch size to the species conservation on the Leizhou Peninsula of Guangdong Province. Method A 40 m × 40 m sample plot was established in each Fengshui forest to analyze the alpha diversity, beta diversity of community and the effect of forest patch area on plants diversity. Result 1) There were 190 species recorded in the 10 Fengshui forests on the Leizhou Peninsula. In the arbor and herb layers, the community of these small Fengshui forest patches consisted mainly of one or several dominant species and numerous rare species. Both the arbor and herb layers had the highest proportion of species with a frequency of 1, which accounted for 39.26% and 48.48% of their respective total richness. 2) The mean Jaccard similarity for the species of arbor and herb layer were only 31.29% and 15.46% respectively. Similarly, the mean Bray-Curtis similarity were merely 25.62% and 11.38% among the 10 Fengshui sample plots. The mean Jaccard similarity and the Bray-Curtis similarity of species between the arbor and herb layers were only 22.77% and 12.12% respectively. 3) There was no significant correlation between the area of Fengshui forest patches and the level of plant diversity conservation, and the impact of forest patch area on the plants composition of arbor and herb layers in Fengshui forests is relatively small. Conclusion Fengshui forests preserved a rich variety of plant species and the size of forest patches had a relatively small impact on their plant diversity, but because they are isolated from each other, most of the species in these forests were rare species, and only a small portion of the seeds developed into seedlings on Leizhou Peninsula. As a result, community stability and resistance to disturbances are relatively weak. -
Key words:
- Fengshui forest /
- Leizhou Peninsula /
- species diversity
-
圖 1 雷州半島風水林中植物的物種豐富度與出現頻次的關系
注:A:喬木層和草本層;B:喬木層;C:草本層。圖中實線與虛線分別為植物物種豐富度隨物種出現頻次變化的回歸線與平滑折線。A: arbor layer & herb layer; B: arbor layer; C: herb layer. The solid and dashed lines are the regression line and the smooth folded line of the change in plant species richness with the frequency of species occurrence, respectively.
Figure 1. The relationship between specie richness and frequency in Fenghsui forests of Leizhou Peninsula
表 1 雷州半島風水林的10個樣地的基本概況
Table 1. Basic information of 10 sample plots in the Fengshui forests of the Leizhou Peninsula
樣地
Sample
plot地點
Location經度
Longitude緯度
Latitude風水林面積
Area of Fengshui
forest/hm2土壤pH值
Soil pH-value有效磷含量
Available phosphoru/
(mg·kg?1)堿解氮含量
Alkali-hydrolyzable
nitrogen/(mg·kg?1)1 龍門鎮足榮村 109.940575 20.619156 52.6 5.67 2.65 261.11 2 龍門鎮停趾村 110.034656 20.645656 4.0 4.52 5.45 125.14 3 龍門鎮湖口村 110.042244 20.648550 4.4 4.64 6.86 138.95 4 龍門鎮坡仔村 110.020139 20.659525 2.1 5.04 4.61 159.66 5 龍門鎮那利村 110.009861 20.667675 1.0 5.99 4.04 118.67 6 雷高鎮木棉村 110.230336 20.828111 5.9 4.71 3.08 359.88 7 雷高鎮題橋村 110.247111 20.762331 2.4 4.62 33.17 290.62 8 南興鎮黃排村 110.113019 20.802317 1.4 4.23 58.66 180.59 9 調風鎮赤尾村 110.302939 20.760594 1.5 4.30 10.95 115.86 10 下橋鎮石板村 110.235772 20.552783 2.5 4.03 5.70 327.52 表 2 雷州半島風水林的10個樣地中植物多樣性與保存水平
Table 2. Plants diversity and the conservation level of 10 sample plots in the Fengshui forests of the Leizhou Peninsula
樣地
Sample
plot喬木層 Arbor layer 草本層 Herb layer 排序
Rank科豐富度
Family
richness屬豐富度
Genus
richness種豐富度
Specie
richness種多度
Specie
abundance科豐富度
Family
richness屬豐富度
Genus
richness種豐富度
Specie
richness種多度
Specie
abundance1 19 32 37 581 20 25 26 236 3 2 26 43 50 1302 13 17 17 78 2 3 29 51 57 735 21 26 26 182 9 4 29 42 51 747 14 18 18 123 4 5 30 50 61 1197 16 24 25 126 8 6 29 48 54 607 16 21 21 133 5 7 27 51 60 874 18 21 23 255 7 8 25 41 46 684 13 16 16 105 1 9 28 43 51 1495 18 24 25 159 6 10 29 48 56 1031 22 27 27 116 10 均值
Mean27 45 52 925 17 22 22 151 — 表 3 雷州半島風水林10個樣地中喬木層和草本層優勢種與稀有種的豐富度與比例
Table 3. Richness and proportion of dominant and rare species in the arbor and hreb layer of the 10 sample plots in the Fengshui forests of Leizhou Peninsula
樣地
Sample
plot喬木層優勢
種豐富度
Richness of
dominant
species in
arbor layer比例1
Proportion/%喬木層稀有
種豐富度
Richness of
rare species
in arbor layer比例2
Proportion/%草本層優勢
種豐富度
Richness of
dominant
species in
herb layer比例3
Proportion/%草本層稀有
種豐富度
Richness of
rare species
in herb layer比例4
Proportion/%1 3 8.11 21 56.76 2 7.69 14 53.85 2 2 4.00 32 64.00 1 5.88 0 0.00 3 1 1.75 40 70.18 1 3.85 13 50.00 4 2 3.92 33 64.71 3 16.67 6 23.08 5 1 1.64 43 70.49 2 8.00 10 38.46 6 2 3.70 35 64.81 3 14.29 5 19.23 7 2 3.33 39 65.00 2 8.70 14 53.85 8 1 2.17 28 60.87 1 6.25 5 19.23 9 2 3.92 32 62.75 4 16.00 11 42.31 10 3 5.36 42 75.00 3 11.11 17 65.38 均值
Mean2 3.79 34 65.46 2 9.84 10 36.54 注:1和2:喬木層優勢種豐富度、稀有種豐富度占喬木層總豐富度的比例;3和4:草本層優勢種豐富度、稀有種豐富度占草本層總豐富度的比例。1 & 2: the proportion of the richness of dominant species and rare species in the total richness of the arbor layer. 3 & 4: the proportion of the richness of dominant species and rare species in the total richness of herb layer. 1 雷州半島風水林喬木層優勢種的多度
1. Abundance of dominant species in the arbor layer in Fengshui forests of Leizhou Peninsula
樣地
Sample plot優勢種的多度
Abundance of dominant species1 銀柴 Aporosa dioica(139) 、陰香 Cinnamomum burmanni(111) 、假蘋婆 Sterculia lanceolata(96) 2 白楸 Mallotus paniculatus(246) 、濱木患 Arytera littoralis(207) 3 米仔蘭 Aglaia odorata(172) 4 鵝掌柴 Heptapleurum heptaphyllum(164) 、白楸 Mallotus paniculatus(102) 5 銀柴 Aporosa dioica(257) 6 紫玉盤 Uvaria macrophylla(100) 、竹節樹 Carallia brachiata(77) 7 網脈瓊楠 Beilschmiedia tsangii(166) 、白楸 Mallotus paniculatus(109) 8 硬殼桂 Cryptocarya chingii(156) 9 濱木患 Arytera littoralis(319) 、白楸 Mallotus paniculatus(265) 10 肉實樹 Sarcosperma laurinum(219) 、九節 Psychotria asiatica(217) 、白楸 Mallotus paniculatus(203) 2 雷州半島風水林草本層優勢種的多度
2. Abundance of dominant species in the herb layer in Fengshui forests of Leizhou Peninsula
樣地
Sample plot優勢種與其多度
Abundance of dominant species1 假蒟 Piper sarmentosum(146) 、心葉素馨 Jasminum pierreanum(24) 2 九節 Psychotria asiatica(10) 3 陰香 Cinnamomum burmanni(123) 4 假蒟 Piper sarmentosum(49) 、白樹 Suregada multiflora(19) 、三椏苦 Melicope pteleifolia(17) 5 大管 Micromelum falcatum(28) 、酒餅簕 Atalantia buxifolia(13) 6 鵝掌柴 Heptapleurum heptaphyllum(24) 、山麥冬 Liriope spicata(21) 、竹節樹 Carallia brachiata(14) 7 猴耳環 Archidendron clypearia(118) 、山蒟 Piper hancei(68) 8 龍船花 Ixora chinensis(56) 9 濱木患 Arytera littoralis(37) 、九節 Psychotria asiatica(26) 、扭肚藤 Jasminum elongatum(25) 、
匙羹藤 Gymnema sylvestre(25)10 九節 Psychotria asiatica(24) 、山蒟 Piper hancei(21) 、中南魚藤 Derris fordii(16) 表 4 雷州半島風水林喬木層幼苗的豐富度與比例
Table 4. Richness and proportion of seedlings in the arbor layer of the Leizhou Peninsula
樣地
Sample plot喬木層幼苗豐富度
Richness of seedlings in arbor layer喬木層幼苗豐富度占喬木層總豐富度的比例
The proportion of the richness of seedlings in arbor
layer to the total richness of the arbor layer/%1 13 35.14 2 15 30.00 3 10 17.54 4 12 23.53 5 17 27.87 6 12 22.22 7 14 23.33 8 10 21.74 9 18 35.29 10 16 28.57 均值 Mean 14 26.52 表 5 風水林斑塊面積與其植物多樣性保存水平的相關關系
Table 5. Correlation between forest patch area and plants diversity conservation level of Fengshui forests
指標
IndexPearson積差相關關系
Pearson product-moment correlationSpearman等級相關關系
Spearman’s rank-order correlation風水林斑塊面積
Fengshui forest patch area?0.29 (P > 0.05) ?0.03 (P > 0.05) 表 6 風水林4個環境因素對其植物種類組成影響的相對重要程度
Table 6. Relative importance of the effects of four environmental factors on plants composition in Fengshui forests
指標
Index喬木層
Arbor layer/%草本層
Herb layer/%風水林斑塊面積 Fengshui forest patch area 2.04 ?0.80 pH值 pH-value 12.17 2.11 速效磷 Available phosphorus 2.46 0.43 堿解氮 Alkali-hydrolyzable nitrogen 3.88 4.34 屌“啊……慢点…肏 -
[1] 白冰, 李寧, 魯長虎, 2011. 生境破碎化對食果動物及種子傳播的影響[J]. 生態學雜志, 30(11): 2613-2620. doi: 10.13292/j.1000-4890.2011.0399 [2] 廣東省植物研究所, 1976. 廣東植被[M]. 北京: 科學出版社, 77-83. [3] 宮田逸夫, 周瑞昌, 1985. 次生林喬木層植被結構對草本層發育的影響[J]. 自然資源研究, (S1): 66-73. doi: 10.16202/j.cnki.tnrs.1985.s1.006 [4] 韓維棟, 黃劍堅, 2017. 基于植物區系的雷州半島天然林群落樹種特征研究[J]. 生態學報, 37(24): 8537-8548. doi: 10.5846/stxb201611022236 [5] 韓維棟, 陳杰, 高秀梅, 2014. 雷州半島木本植物區系及其驅動力分析[J]. 生態科學, 33(6): 1091-1094. doi: 10.14108/j.cnki.1008-8873.2014.06.009 [6] 侯芳, 王克勤, 宋婭麗, 等, 2019. 滇中亞高山典型森林林下植被碳氮儲量及其分配格局[J]. 水土保持研究, 26(1): 61-68. doi: 10.13869/j.cnki.rswc.2019.01.009 [7] 蘭國玉, 王紀坤, 吳志祥, 等, 2014. 海南儋州橡膠林物種組成及群落特征研究[J]. 西南林業大學學報, 34(5): 8-13. doi: 10.3969/j.issn.2095-1914.2014.05.002 [8] 李福勝, 張仲, 李斌, 2012. 湛江市1951~2011年暴雨氣候的變化特征[J]. 廣東氣象, 34(6): 35-37. doi: 10.3969/j.issn.1007-6190.2012.06.010 [9] 劉堯, 于馨, 于洋, 等, 2023. R程序包“rdacca.hp”在生態學數據分析中的應用: 案例與進展[J]. 植物生態學報, 47(1): 134-144. doi: 10.17521/cjpe.2022.0314 [10] 廖宇紅, 陳傳國, 陳紅躍, 等, 2008. 廣州市蓮塘村風水林群落特征及植物多樣性[J]. 生態環境, 17(2): 812-817. doi: 10.16258/j.cnki.1674-5906.2008.02.078 [11] 劉金亮, 于明堅, 2019. 片段化森林群落構建的生態過程及其檢驗方法[J]. 植物生態學報, 43(11): 929-945. doi: 10.17521/cjpe.2019.0155 [12] 羅旋, 2012. 浙江風水林調查研究[D]. 杭州: 浙江農林大學. [13] 王靜, 閆巧玲, 2017. 干擾對動物傳播森林植物種子有效性影響的研究進展[J]. 應用生態學報, 28(5): 1716-1726. doi: 10.13287/j.1001-9332.201705.033 [14] 武麗瓊, 左雪冬, 馮海燕, 等, 2016. 雷州半島實榮村風水林植物調查及現狀分析[J]. 熱帶農業科學, 36(12): 87-91. doi: 10.12008/j.issn.1009-2196.2016.12.021 [15] 謝錠淇, 黃銳洲, 許涵, 等, 2022. 雷州半島風水林中無患子的空間分布格局與空間關聯性[J]. 熱帶亞熱帶植物學報, 30(1): 31-40. doi: 10.11926/jtsb.4396 [16] 楊歡, 王寅, 王健銘, 等, 2021. 環境過濾和擴散限制對庫姆塔格沙漠南緣植物群落β-多樣性的影響[J]. 中國沙漠, 41(3): 147-154. doi: 10.7522/j.issn.1000-694X.2020.00129 [17] 楊期和, 陳美鳳, 賴萬年, 等, 2012. 粵東地區客家風水林群落特征研究[J]. 南方農業學報, 43(12): 2040-2044. doi: 10.3969/j:issn.2095-1191.2012.12.2040 [18] 楊期和, 潘素芳, 賴萬年, 等, 2015. 粵東橋溪村風水林群落特征初探[J]. 廣西植物, 35(6): 833-841. doi: 10.11931/guihaia.gxzw201306009 [19] 尤業明, 徐佳玉, 蔡道雄, 等, 2016. 廣西憑祥不同年齡紅椎林林下植物物種多樣性及其環境解釋[J]. 生態學報, 36(1): 164-172. doi: 10.5846/stxb201411242332 [20] 張秀亮, 許建偉, 沈海龍, 等, 2010. 動物對花楸樹種實的取食與傳播[J]. 應用生態學報, 21(10): 2677-2683. doi: 10.13287/j.1001-9332.2010.0358 [21] 朱華, 2018. 中國熱帶生物地理北界的建議[J]. 植物科學學報, 36(6): 893-898. doi: 10.11913/PSJ.2095-0837.2018.60893 [22] 祝燕, 米湘成, 馬克平, 2009. 植物群落物種共存機制: 負密度制約假說[J]. 生物多樣性, 17(6): 594-604. doi: 10.3724/SP.J.1003.2009.09183 [23] Anderson M J, Legendre P, 1999. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model[J]. Journal of Statistical Computation and Simulation, 62(3): 271-303. doi: 10.1080/00949659908811936 [24] Arroyo-Rodríguez V, Pineda E, Escobar F, et al, 2009. Value of small patches in the conservation of plant-species diversity in highly fragmented rainforest[J]. Conservation Biology, 23(3): 729-739. doi: 10.1111/j.1523-1739.2008.01120.x [25] Chen B X, Coggins C, Minor J, et al, 2018. Fengshui forests and village landscapes in China: geographic extent, socioecological significance, and conservation prospects[J]. Urban Forestry & Urban Greening, 31: 79-92. doi: 10.1016/j.ufug.2017.12.011 [26] Clark C M, Tilman D, 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 451(7): 712-715. doi: 10.1038/nature06503 [27] D'Eon R G, 2002. Forest fragmentation and forest management: a plea for empirical data[J]. The Forestry Chronicle, 78(5): 686-689. doi: 10.5558/tfc78686-5 [28] Gilbert B, Laurance W F, Leigh E J, et al, 2006. Can neutral theory predict the responses of Amazonian tree communities to forest fragmentation? [J]. American Naturalist, 168(3): 304-317. doi: 10.1086/506969 [29] Haddad N M, Brudvig L A, Clobert J, et al, 2015. Habitat fragmentation and its lasting impact on earth's ecosystems[J]. Science Advances, 1(2): e1500052. doi: 10.1126/sciadv.1500052 [30] Hu L, Li Z, Liao W, et al, 2011. Values of village fengshui forest patches in biodiversity conservation in the Pearl River Delta, China[J]. Biological Conservation, 144(5): 1553-1559. doi: 10.1016/j.biocon.2011.01.023 [31] Hubbell S P, 2001. The unified neutral theory of biodiversity and biogeography[M]. Princeton, New Jersey, USA: Princeton University Press, 1-375. [32] Ibá?ez I, Daniel S W K, Peltier D, et al, 2014. Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics[J]. Journal of Ecology, 102(4): 882-895. doi: 10.1111/1365-2745.12223 [33] Kabacoff R, 2015. R in action: data analysis and graphics with R[M]. 2nd ed. Greenwich, UK: Manning Publications, 1-579. [34] Lai J S, Zou Y, Zhang J L, et al, 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package[J]. Methods in Ecology and Evolution, 13(4): 782-788. doi: 10.1111/2041-210X.13800 [35] Legendre P, Desdevises Y, 2009. Independent contrasts and regression through the origin[J]. Journal of Theoretical Biology, 259(4): 727-743. doi: 10.1016/j.jtbi.2009.04.022 [36] Ma L, Huang M, Shen Y, et al, 2015. Species diversity and community structure in forest fragments of Guangzhou, South China[J]. Journal of Tropical Forest Science, 27(2): 148-157. doi: 10.2307/43582380 [37] Mccoy E D, Mushinsky H R, 1994. Effects of fragmentation on the richness of vertebrates in the Florida scrub habitat[J]. Ecology, 75(2): 446-457. doi: 10.2307/1939548 [38] Page N V, Qureshi Q, Rawat G S, et al, 2010. Plant diversity in sacred forest fragments of western ghats: a comparative study of four life forms[J]. Plant Ecology, 206(2): 237-250. doi: 10.1007/s11258-009-9638-8 [39] Pradhan A, Ormsby A A, 2020. Biocultural conservation in the sacred forests of Odisha, India[J]. Environmental Conservation, 47(3): 190-196. doi: 10.1017/S0376892920000181 [40] Ricotta C, Podani J, 2017. On some properties of the Bray-Curtis dissimilarity and their ecological meaning[J]. Ecological Complexity, 31: 201-205. doi: 10.1016/j.ecocom.2017.07.003 [41] Seto K C, Guneralp B, Hutyra L R, 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(40): 16083-16088. doi: 10.1073/pnas.1211658109/-/DCSupplemental [42] Upadhaya K, Pandey H N, Law P S, et al, 2003. Tree diversity in sacred groves of the Jaintia hills in Meghalaya, northeast India[J]. Biodiversity and Conservation, 12(3): 583-597. doi: 10.1023/a:1022401012824 [43] Venter O, Sanderson E W, Magrach A, et al, 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation[J]. Nature Communications, 7(1): 1-11. doi: 10.1038/ncomms12558 [44] Wassie A, Sterck F J, Bongers F, 2010. Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape[J]. Journal of Vegetation Science, 21(5): 938-948. doi: 10.1111/j.1654-1103.2010.01202.x [45] Wright J S, 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence[J]. Oecologia, 130(1): 1-14. doi: 10.1007/s004420100809 -