Variation of N and P Contents of Quercus aquifolioides Leaves Along Elevation
-
摘要:
目的 研究川滇高山櫟(Quercus aquifolioides)葉片氮和磷含量特征隨海拔的變化規律,了解調控其變化的主要因素,揭示川滇高山櫟葉片對環境變化的響應機制。 方法 以青藏高原東南部川滇高山櫟林為研究對象,采集不同海拔的川滇高山櫟葉片以及0~10 cm表層土,通過元素分析儀和等離子體發射光譜儀測定葉片氮和磷含量,研究葉片氮和磷含量隨海拔的變化規律,并結合葉片部分性狀特征和土壤理化性質,采用變異分區分析探討影響葉片氮和磷含量變異的主要因子。 結果 川滇高山櫟葉片單位面積氮含量變化在0.25~0.29 mg·cm?2之間,單位質量氮含量變化在11.41~14.82 g·kg?1之間。葉片單位面積磷含量變化在14.83~32.77 μg·cm?2之間,單位質量磷含量變化在0.74~1.79 g·kg?1之間。海拔顯著影響川滇高山櫟葉片氮和磷含量,其中葉片單位面積和單位質量的氮含量均呈現沿海拔升高而下降的趨勢,而葉片單位面積和單位質量的磷含量均呈現沿海拔升高而增加的趨勢。同時,海拔也顯著影響部分葉片性狀特征,其中葉鮮重、葉面積和葉密度呈現沿海拔升高而下降的趨勢,葉厚呈現沿海拔升高而增加的趨勢,葉片含水率和單位面積葉質量未發現明顯變化趨勢。此外,葉片氮和磷含量隨葉片性狀變化表現出不同變化趨勢,單位質量氮含量隨單位面積葉質量、葉厚的增加而下降,隨葉密度增加而增加,而單位質量磷含量隨單位面積葉質量、葉密度增加而下降。調控葉片氮和磷含量變化的主控因素存在差異,氮含量主要受葉片性狀、土壤性質及兩者的協同作用共同影響,而磷含量受土壤性質、土壤性質和葉片性狀協同作用的影響更大,受葉片性狀的獨立影響相對較小。 結論 川滇高山櫟葉片氮含量隨海拔升高而下降,葉片磷含量隨海拔升高而增加,且均受到土壤性質和葉片性狀的影響。因此,在預測葉片氮和磷含量對海拔變化的響應時,要充分考慮葉片性狀、土壤性質的可能影響。 Abstract:Objective The purpose of the study was to analyze the change patterns of Quercus aquifolioides leaf nitrogen and phosphorus characteristics along elevations, to understand the main factors regulating leaf nitrogen and phosphorus changes, and to reveal the response mechanism of Q. aquifolioides leaves to environmental changes. Method In this study, Q. aquifolioides forests on the southeastern Qinghai-Tibetan Plateau were used as the research object, and the leaves of Q. aquifolioides and 0~10 cm topsoil at different elevations were collected. The nitrogen and phosphorus contents of the leaves were determined by elemental analyzer and plasma emission spectroscopy. The variation patterns of leaf nitrogen and phosphorus contents along different elevations were studied, and the main factors affecting leaf nitrogen and phosphorus contents were explored using variation partitioning analysis in combination with partial leaf trait characteristics and soil physicochemical properties. Result The nitrogen content per unit area of Q. aquifolioides leaves ranged from 0.25~0.29 mg·cm?2 and nitrogen content per unit mass ranged from 11.41~14.82 g·kg?1. The phosphorus content per unit area of the leaves ranged from 14.83~32.77 μg·cm?2 and phosphorus content per unit mass ranged from 0.74~1.79 g·kg?1. Elevation affected the nitrogen and phosphorus contents of Q. aquifolioides leaves significantly, and the nitrogen content per unit area and per unit mass of leaves decreased with the increase of elevation, while the phosphorus content per unit area and per unit mass showed an increasing trend along with the elevation. Meanwhile, elevation also affected partial leaf trait characteristics significantly. Leaf fresh mass, leaf area and leaf density showed a decreasing trend along the elevation, and leaf thickness showed an increasing trend along the elevation. Leaf moisture and leaf mass per unit area did not show a significant trend along the elevation. In addition, leaf nitrogen and phosphorus contents showed different trends with changes in leaf traits. The unit mass nitrogen content decreased with the increase of leaf mass per unit area and leaf thickness and increased with the increase of leaf density, while the unit mass phosphorus content decreased with the increase of leaf mass per unit area and leaf density. The main controlling factors regulating the changes of leaf nitrogen and phosphorus contents differed, with nitrogen content mainly affected by the combined effect of leaf traits, soil properties and the synergistic effect of both, while phosphorus content was mainly affected by soil properties, the synergistic effect of soil properties and leaf traits, and was relatively less affected by the independent effect of leaf traits. Conclusion The leaf nitrogen content of Q. aquifolioides decreased and the leaf phosphorus content increased with elevation, and both were affected by soil properties and leaf traits. Therefore, the possible effects of leaf traits and soil properties on leaf nutrient contents should be fully considered when predicting the trends of leaf N and P contents in response to elevation changes. -
Key words:
- elevation /
- leaf nutrient /
- spatial heterogeneity /
- soil property /
- the Qinghai-Tibetan Plateau /
- Quercus aquifolioides
-
圖 1 不同海拔的川滇高山櫟葉片N和P含量
注: (a)不同海拔的葉片單位面積N(Narea)和P(Parea)含量的差異性。(b)不同海拔的葉片單位質量N(Nmass)和P(Pmass)含量的差異性。不同小寫或大寫字母分別表示不同海拔的葉片N含量或P含量差異顯著(P < 0.05)。**,P < 0.01。(a) Variability of N (Narea) and P (Parea) contents per unit area of leaves at different elevations. (b) Variability of N (Nmass) and P (Pmass) contents per unit mass of leaves at different elevations. Different lowercase letters or capital letters indicate significant differences (P < 0.05) in leaf N contents or P contents at different elevations. **,P < 0.01.
Figure 1. Leaf N and P contents of Quercus aquifolioides at different elevations
圖 4 不同影響因子對葉片Nmass和Pmass含量的相對貢獻
注: 通過方差分解分析(VPA)確定葉片性狀和土壤性質對葉片Nmass(a)和Pmass(b)含量的相對貢獻。葉片性狀:葉鮮重、葉片含水率、LMA、LT、LA、LD。土壤性質:土壤含水率、pH、TC、TN、TP、TC:TN、TC:TP、TN:TP、NH4+-N、NO3?-N、有效P。The relative contributions of leaf traits and soil properties to leaf Nmass (a) and Pmass (b) contents by VPA. Leaf traits: leaf fresh mass, leaf moisture, LMA, LT, LA, and LD. Soil properties: soil moisture, pH, TC, TN, TP, TC:TN, TC:TP, TN:TP, NH4+-N, NO3?-N, and available P.
Figure 4. Relative contributions of different impact factors to leaf Nmass and Pmass contents
表 1 不同海拔的川滇高山櫟葉片部分性狀的混合線性模型分析
Table 1. Mixed linear model analysis of partial leaf trait characteristics of Quercus aquifolioides under different elevations
海拔
Elevation/m葉鮮重
Leaf fresh mass/g葉片含水率
Leaf moisture/%葉厚
LT/μm葉面積
LA/cm2單位面積葉質量
LMA/(g m?2)葉密度
LD/(g cm?3)3100 0.42±0.02a 41.43±0.62b 350.67±10.31b 11.82±0.48b 209.95±5.32ab 0.60±0.03a 3250 0.36±0.02b 41.32±0.55b 346.13±3.33b 10.79±0.34b 197.67±2.20abc 0.57±0.01ab 3430 0.46±0.01a 42.18±0.71b 370.67±15.42b 13.42±0.32a 196.79±5.11bc 0.53±0.02abc 3730 0.24±0.01c 45.38±0.56a 360.27±6.71b 7.21±0.26c 183.03±4.67c 0.51±0.01bc 3880 0.25±0.02c 43.26±0.57ab 422.93±13.74a 7.01±0.49cd 199.46±2.62abc 0.47±0.02c 4030 0.19±0.01cd 41.98±0.78b 428.40±7.61a 5.56±0.23de 200.18±3.98abc 0.47±0.01c 4180 0.16±0.01d 42.25±0.69b 423.73±8.24a 4.29±0.21e 214.98±2.99a 0.51±0.01bc 固定效應 77.057** 4.730** 13.580** 97.669** 6.482** 8.231** 注:不同小寫字母表示不同海拔下葉片性狀指標差異顯著(P < 0.05)。**,P < 0.01。Different lowercase letters indicate significant differences (P < 0.05) in leaf trait indexes at different elevations. **, P < 0.01. 表 2 川滇高山櫟部分葉片性狀與海拔的線性回歸分析
Table 2. Linear regression analysis between partial leaf traits of Quercus aquifolioides and elevation
變量 Variables R2 F P 回歸方程 Regression equations 葉鮮重 Leaf fresh mass 0.787 122.201 <0.01** y = 1.253?0.0003x 葉片含水率 Leaf moisture — — — — 葉厚 LT 0.594 48.283 <0.01** y = 87.358 + 0.082x 葉面積 LA 0.789 123.098 <0.01** y = 36.588?0.008x 單位面積葉質量 LMA — — — — 葉密度 LD 0.498 32.696 <0.01** y = 0.914?0.0001x 注:**,P < 0.01。 表 3 葉片N、P含量在不同海拔下的線性回歸分析
Table 3. Linear regression analysis of leaf N and P contents under different elevations
變量 Variables R2 F P 回歸方程 Regression equations Narea 0.244 10.650 0.003** y = 0.375?3.15×10?5x Nmass 0.226 9.625 0.004** y = 19.108?0.002x Parea 0.516 35.171 <0.001*** y = ?24.506 + 0.013x Pmass 0.412 23.087 <0.001*** y = ?1.151 + 0.001x 注:**,P < 0.01;***,P < 0.001。 屌“啊……慢点…肏 -
[1] 蔡國俊, 鎖盆春, 張麗敏, 等, 2021. 黔南喀斯特峰叢洼地3種建群樹種不同器官C、N、P化學計量特征[J]. 貴州師范大學學報(自然科學版), 39(5): 36-44. doi: 10.16614/j.gznuj.zrb.2021.05.006 [2] 陳柯豪, 杜紅梅, 劉春江, 2020. 云南喀斯特斷陷盆地典型群落植物生態化學計量學特征[J]. 中國巖溶, 39(6): 883-893. doi: 10.11932/karst20200609 [3] 段永峰, 2021. 賀蘭山東麓植物葉片性狀對環境因子的響應[D]. 銀川市: 寧夏大學. DOI: 10.27257/d.cnki.gnxhc.2021.001051. [4] 付作琴, 呂茂奎, 李曉杰, 等, 2019. 武夷山不同海拔黃山松新葉和老葉氮磷化學計量特征[J]. 生態學雜志, 38(3): 648-654. doi: 10.13292/j.1000-4890.201903.020 [5] 康靜, 韓國棟, 任海燕, 等, 2019. 不同降水條件下荒漠草原植物的養分含量及回收對增溫和氮素添加的響應[J]. 西北植物學報, 39(9): 1651-1660. doi: 10.7606/j.issn.1000-4025.2019.09.1651 [6] 劉思文, 艾也博, 劉艷紅, 2021. 北京松山油松葉功能性狀沿海拔梯度的變化及其環境解釋[J]. 北京林業大學學報, 43(4): 47-55. doi: 10.12171/j.1000-1522.20200292 [7] 寧志英, 李玉霖, 楊紅玲, 等, 2019. 科爾沁沙地優勢固沙灌木葉片氮磷化學計量內穩性[J]. 植物生態學報, 43(1): 46-54. doi: 10.17521/cjpe.2018.0100 [8] 任運濤, 徐翀, 張晨曦, 等, 2017. 賀蘭山青海云杉針葉C、N、P含量及其計量比隨環境因子的變化特征[J]. 干旱區資源與環境, 31(6): 185-191. doi: 10.13448/j.cnki.jalre.2017.199 [9] 尚艷瓊, 陳志強, 陳志彪, 等, 2022. 南方紅壤侵蝕區芒萁葉片對微地形的響應[J]. 廣西植物, 42(7): 1088-1095. doi: 10.11931/guihaia.gxzw202101017 [10] 馮秋紅, 史作民, 董莉莉, 等, 2010. 南北樣帶溫帶區櫟屬樹種功能性狀間的關系及其對氣象因子的響應[J]. 植物生態學報, 34(6): 619-627. doi: 10.3773/j.issn.1005-264x.2010.06.001 [11] 宋富強, 曹坤芳, 2005. 元江干熱河谷植物葉片解剖和養分含量特征[J]. 應用生態學報, 16(1): 33-38. doi: 10.13287/j.1001-9332.2005.0382 [12] 孫力, 貢璐, 朱美玲, 等, 2017. 塔里木盆地北緣荒漠典型植物葉片化學計量特征及其與土壤環境因子的關系[J]. 生態學雜志, 36(5): 1208-1214. doi: 10.13292/j.1000-4890.201705.021 [13] 田地, 嚴正兵, 方精云, 2021. 植物生態化學計量特征及其主要假說[J]. 植物生態學報, 45(7): 682-713. doi: 10.17521/cjpe.2020.0331 [14] 徐雨, 張凱, 竇亮, 等, 2021. 繁殖期黃喉雉鶉在景觀尺度上的生境選擇[J]. 生態學報, 41(8): 3248-3254. doi: 10.5846/stxb201902230336 [15] 楊蕾, 孫晗, 樊艷文, 等, 2017. 長白山木本植物葉片氮磷含量的海拔梯度格局及影響因子[J]. 植物生態學報, 41(12): 1228-1238. doi: 10.17521/cjpe.2017.0115 [16] 楊穎, 吳昊, 馬強, 等, 2022. 水稻葉片特征與水分利用效率的關系研究進展[J]. 安徽農業科學, 50(7): 16-18,29. doi: 10.3969/j.issn.0517-6611.2022.07.004 [17] 周俊妞, 黃婧, 馬姜明, 等, 2020. 桂林喀斯特石山50種常見植物葉片養分特征及其適應性差異[J]. 生態學報, 40(17): 6126-6134. doi: 10.5846/stxb201907311623 [18] Augusto L, Achat D L, Jonard M, et al, 2017. Soil parent material—A major driver of plant nutrient limitations in terrestrial ecosystems[J]. Global Change Biology, 23(9): 3808-3824. doi: 10.1111/gcb.13691 [19] Chen F S, Niklas K J, Chen G S, et al, 2012. Leaf traits and relationships differ with season as well as among species groupings in a managed Southeastern China forest landscape[J]. Plant Ecology, 213: 1489-1502. doi: 10.1007/s11258-012-0106-5 [20] Chen J, Luo Y, Li J, et al, 2016. Co-stimulation of soil glycosidase activity and soil respiration by nitrogen addition[J]. Global Change Biology, 23(3): 1328-1337. doi: 10.1111/gcb.13402 [21] Chen L, Xiang W, Wu H, et al, 2019. Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests[J]. Soil Biology and Biochemistry, 130: 113-121. doi: 10.1016/j.soilbio.2018.12.008 [22] Cui Y, Bing H, Fang L, et al, 2021. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems[J]. Plant and Soil, 458(1): 7-20. doi: 10.1007/s11104-019-04159-x [23] Feng J, Wei K, Chen Z, et al, 2019. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: evidence from ecoenzymatic stoichiometry[J]. Global Biogeochemical Cycles, 33(5): 559-569. doi: 10.1029/2018GB006112 [24] Fisher J B, Malhi Y, Torres I C, et al, 2013. Nutrient limitation in rainforests and cloud forests along a 3, 000-m elevation gradient in the Peruvian Andes[J]. Oecologia, 172(3): 889-902. doi: 10.1007/s00442-012-2522-6 [25] Garousi F, Shan Z, Ni K, et al, 2021. Decreased inorganic N supply capacity and turnover in calcareous soil under degraded rubber plantation in the tropical karst region[J]. Geoderma, 381: 114754. doi: 10.1016/j.geoderma.2020.114754 [26] Gong H, Cui Q, Gao J, 2020. Latitudinal, soil and climate effects on key leaf traits in northeastern China[J]. Global Ecology and Conservation, 22: e00904. doi: 10.1016/j.gecco.2020.e00904 [27] Li Z L, Peng Q, Dong Y S, et al, 2022. The influence of increased precipitation and nitrogen deposition on the litter decomposition and soil microbial community structure in a semiarid grassland[J]. Science of the Total Environment, 844: 157115. doi: 10.1016/j.scitotenv.2022.157115 [28] Manu R, Corre M D, Aleeje A, et al, 2022. Responses of tree growth and biomass production to nutrient addition in a semi-deciduous tropical forest in Africa[J]. Ecology, 103(6): e3659. doi: 10.1002/ecy.3659 [29] Mo Q, Zou B, Li Y, et al, 2015. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest[J]. Scientific Reports, 5(1): 14605. doi: 10.1038/srep14605 [30] Oleksyn J, Reich P B, Zytkowuak R, et al, 2003. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations[J]. Oecologia, 136(2): 220-235. doi: 10.1007/s00442-003-1265-9 [31] Peguero-Pina J J, Vilagrosa A, Alonso-Forn D, et al, 2020. Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity[J]. Forests, 11(10): 1028. doi: 10.3390/f11101028 [32] Poorter H, Niinemets U, Poorter L, et al, 2009. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[J]. New Phytologist, 182(3): 565-588. doi: 10.1111/j.1469-8137.2009.02830.x [33] Reich P B, Oleksyn J, 2004. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 101(30): 11001-11006. doi: 10.1073/pnas.0403588101 [34] Salazar P C, Navarro-Cerrillo R M, Grados N, et al, 2019. Tree size and leaf traits determine the fertility island effect in Prosopis pallida dryland forest in Northern Peru[J]. Plant and Soil, 437: 117-135. doi: 10.1007/s11104-019-03965-7 [35] Shi W, Wang G, Han W, 2012. Altitudinal variation in leaf nitrogen concentration on the eastern slope of Mount Gongga on the Tibetan Plateau, China[J]. PLoS ONE, 7(9): e44628. doi: 10.1371/journal.pone.0044628 [36] Stock S C, K?ster M, Dippold M A, et al, 2019. Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale[J]. Geoderma, 337: 973-982. doi: 10.1016/j.geoderma.2018.10.030 [37] Uma?a M N, Swenson N G, 2019. Intraspecific variation in traits and tree growth along an elevational gradient in a subtropical forest[J]. Oecologia, 191(1): 153-164. doi: 10.1007/s00442-019-04453-6 [38] Wang A, Wang X, Tognetti R, et al, 2018. Elevation alters carbon and nutrient concentrations and stoichiometry in Quercus aquifolioides in southwestern China[J]. Science of the Total Environment, 622: 1463-1475. doi: 10.1016/j.scitotenv.2017.12.070 [39] Wieder W R, Cleveland C C, Smith W K, et al, 2015. Future productivity and carbon storage limited by terrestrial nutrient availability[J]. Nature Geoscience, 8: 441-444. doi: 10.1038/ngeo2413 [40] van de Weg M J, Meir P, Grace J, et al, 2009. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru[J]. Plant Ecology & Diversity, 2(3): 243-254. doi: 10.1080/17550870903518045 [41] Vilà-Cabrera A, Martínez-Vilalta J, Retana J, 2015. Functional trait variation along environmental gradients in temperate and Mediterranean trees[J]. Global Ecology and Biogeography, 24(12): 1377-1389. doi: 10.1111/geb.12379 [42] Xie D J, Wang C J, Wan J Z, 2022. Large-scale effects of aridity on leaf nitrogen and phosphorus concentrations of terrestrial plants[J]. Climate, 10(11): 171. doi: 10.3390/cli10110171 [43] Xu F, Guo W, Xu W, et al, 2009. Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Progress in Natural Science, 19(12): 1789-1798. doi: 10.1016/j.pnsc.2009.10.001 [44] Zhou L, Liu S, Shen H, et al, 2020. Soil extracellular enzyme activity and stoichiometry in China’s forests[J]. Functional Ecology, 34: 1461-1471. doi: 10.1111/1365-2435.13555 -