A Review on Soil Organic Carbon Stocks and Regulation Mechanisms Between Different Mycorrhizal Trees
-
摘要: 森林土壤有機碳庫(SOC)是全球碳循環和陸地生態系統重要組成部分,對氣候變化有重要影響。幾乎所有的森林樹木根系都與叢枝菌根(AM)或外生菌根(ECM)真菌共生,但2種菌根樹種的土壤碳循環存在差異。本文綜述了目前研究中2種菌根樹種土壤SOC儲量存在差異的原因,總結了調控不同菌根樹種SOC分解的機制以及可能在區域尺度上的變異,展望了未來菌根樹種SOC研究方向和熱點,旨在為精準預測菌根真菌對森林土壤碳匯的影響提供參考。Abstract: Forest soil organic carbon (SOC) pool is a key component in global carbon cycles and terrestrial ecosystems, which plays a vital role on climate change. Nearly all tree species develop symbiotic relationships with either arbuscular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi to acquire nutrients from soils, but there were differences in soil carbon cycling between the two mycorrhizal species. This paper reviewed the reasons for the differences in SOC stock between the two mycorrhizal tree species, summarized the mechanism of regulating SOC decomposition of different mycorrhizal tree species and their possible variations at the regional scale, and looked forward to the future research direction and hotspots of mycorrhizal tree SOC, aiming to provide a helpful reference for accurately predicting the impact of mycorrhizal fungi on forest soil carbon sinks.
-
Key words:
- mycorrhiza /
- soil organic carbon /
- forest /
- stock /
- regulation mechanism
-
表 1 兩種菌根樹種對土壤有機碳循環的影響對比
Table 1. Comparison of two mycorrhizal tree species on soil organic carbon cycle
AM樹種
AM tree speciesECM樹種
ECM tree species主要參考文獻
References主要樹種
Major tree species木荷、桂樹、樟樹等 松、樺、杉等 何新華等, 2012; 師偉等, 2007 主要分布范圍
Major distribution area熱帶、亞熱帶 溫帶、寒帶 Crowther et al., 2019 胞外酶分泌
Extracellular enzyme secretion ability不能分泌胞外酶 能分泌胞外酶 Frey, 2019; Phillips et al., 2013 與腐生微生物的養分競爭
Nutrient competition with saprotrophs競爭弱 競爭強 Wooliver et al., 2019; Averill & Hawkes, 2016;
Taylor et al., 2016; Averill et al., 2014;凋落物質量
Litter qualityC/N比低 C/N比高 Keller et al., 2021; Craig et al., 2018; Lin et al., 2016 凋落物分解
Litter decomposition rate分解快 分解慢 Keller et al., 2021; Craig et al., 2018; Lin et al., 2016 根系碳輸入
Root C input比例小,量少 比例大,量多 Gill and Finzi, 2016; Yin et al., 2014;
Phillips and Fahey, 2005SOC分解
SOC decomposition rate尚存爭議 尚存爭議 Li et al., 2020; Lin et al., 2016; Averill et al., 2014 碳含量
C concentrations尚存爭議 尚存爭議 Li et al., 2020; Lin et al., 2016; Averill et al., 2014 注:AM:Arbuscular Mycorrhizal;ECM:Ectomycorrhizal;C: Carbon;C/N:有機碳(C)與總氮(N)比值;SOC:Soil Organic Carbon。 屌“啊……慢点…肏 -
[1] 方精云, 2021. 碳中和的生態學透視[J]. 植物生態學報, 45(11): 1173-1176. doi: 10.17521/cjpe.2021.0394 [2] 馮繼廣, 朱彪, 2020. 氮磷添加對樹木生長和森林生產力影響的研究進展[J]. 植物生態學報, 44(06): 583-597. doi: 10.17521/cjpe.2019.0176 [3] 何新華, 段英華, 陳應龍, 等, 2012. 中國菌根研究60年: 過去、現在和將來[J]. 中國科學(生命科學), 42(6): 431-454. doi: 10.1007/s11427-010-4096-z [4] 李銀, 陳國科, 林敦梅, 等, 2016. 浙江省森林生態系統碳儲量及其分布特征[J]. 植物生態學報, 40(4): 354-363. doi: 10.17521/cjpe.2015.0193 [5] 馬克平, 2011. 森林與人類休戚相關, 需要我們更多呵護[J]. 生物多樣性, 19(3): 273-274. doi: 10.3724/SP.J.1003.2011.02088 [6] 潘根興, 曹建華, 周運超, 2004. 土壤碳及其在地球表層系統碳循環中的意義[J]. 第四紀研究, 2000(4): 325-334. doi: 10.3321/j.issn:1001-7410.2000.04.003 [7] 師偉, 王政權, 劉金梁, 等, 2007. 帽兒山天然次生林20個闊葉樹種細根形態[J]. 植物生態學報, 32(6): 1217-1226. doi: 10.3773/j.issn.1005-264x.2008.06.002 [8] 王薪琪, 王傳寬, 張泰東, 2017. 森林土壤碳氮循環過程的新視角: 叢枝與外生菌根樹種的作用[J]. 植物生態學報, 41(10): 1113-1125. doi: 10.17521/cjpe.2017.0116 [9] 尹華軍, 張子良, 劉慶, 2018. 森林根系分泌物生態學研究: 問題與展望[J]. 植物生態學報, 42(11): 1055-1070. doi: 10.17521/cjpe.2018.0156 [10] Averill C, Turner B L, Finzi A C, 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature, 505: 543-545. doi: 10.1038/nature12901 [11] Averill C, Hawkes C V, 2016. Ectomycorrhizal fungi slow soil carbon cycling[J]. Ecology Letters, 19(8): 937-947. doi: 10.1111/ele.12631 [12] Boggs J L, McNulty S G, Gavazzi M J, et al, 2005. Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests[J]. Canadian Journal of Forest Research, 35(8): 1901-1913. doi: 10.1139/x05-128 [13] Bonan G B, 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 320: 1444-1449. doi: 10.1126/science.1155121 [14] Bond-Lamberty B, Thomson A, 2010. Temperature-associated increases in the global soil respiration record[J]. Nature, 464(7288): 579-582. doi: 10.1038/nature08930 [15] Brzostek E R, Dragoni D, Brown Z A, et al, 2015. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest[J]. New Phytologist, 206(4): 1274-82. doi: 10.1111/nph.13303 [16] Brzostek E R, Fisher J B, Phillips R P, 2014. Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation[J]. Journal of Geophysical Research - Biogeosciences, 119(8): 1684-1697. doi: 10.1002/2014JG002660 [17] Clemmensen K E, Bahr A, Ovaskainen O, et al, 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 339(6127): 1615-1618. doi: 10.1126/science.1231923 [18] Carrara J E, Walter C A, Freedman Z B, et al, 2021. Differences in microbial community response to nitrogen fertilization result in unique enzyme shifts between arbuscular and ectomycorrhizal-dominated soils[J]. Global Change Biology, 27(10): 1-12. doi: 10.1111/GCB.15523 [19] Cleveland C C, Townsend A R, Taylor P, et al, 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis[J]. Ecology Letters, 14(9): 1313-1317. doi: 10.1111/j.1461-0248.2011.01658.x [20] Craig M E, Benjamin L, Turner B L, et al, 2018. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter[J]. Global Change Biology, 24(8): 3317-3330. doi: 10.1111/gcb.14132 [21] Crowther T W, van den Hoogen J, Wan J, et al, 2019. The global soil community and its influence on biogeochemistry[J]. Science, 365(6455): eaav0550. doi: 10.1126/science.aav0550 [22] Davidson E A, Janssens I A, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 440: 165-173. doi: 10.1038/nature04514 [23] Ding Y D, Xie X Y, Ji J H, et al, 2021. Tree mycorrhizal effect on litter-leached DOC amounts and biodegradation is highly dependent on leaf habits in subtropical forests of southern China[J]. Journal of Soils and Sediments, 21: 3572-3579. doi: 10.1007/s11368-021-03032-8 [24] Elser J J, Bracken M E, Cleland E E, et al, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 10(12): 1135-1142. doi: 10.1111/j.1461-0248.2007.01113.x [25] Fan Y, Lin F, Yang L, et al, 2018. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biology and Fertility Soils, 54(1): 149-161. doi: 10.1007/s00374-017-1251-8 [26] Fernandez C W, Kennedy P G, 2016. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? [J]. New Phytologist, 209(4): 1382-1394. doi: 10.1111/nph.13648 [27] Finzi A C, Abramoff R Z, Spiller K S, et al, 2015. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles[J]. Global Change Biology, 21(5): 2082-2094. doi: 10.1111/gcb.12816 [28] Frey S D, 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics[J]. Annual Review of Ecology, Evolution, and Systematics, 50(1): 237–259. DOI: 10.1146/annurev-ecolsys-110617-062331. [29] Gill A L, Finzi A C, 2016. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale[J]. Ecology Letters, 19(12): 1419-1428. doi: 10.1111/ele.12690 [30] Jia J, Feng X J, He J S, et al, 2017. Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland[J]. Soil Biology Biochemistry, 104: 141-151. doi: 10.1016/j.soilbio.2016.10.018 [31] Jia Y F, Liu Z G, Zhou L, et al, 2023. Soil organic carbon sourcing variance in the rhizosphere vs. non-rhizosphere of two mycorrhizal tree species[J]. Soil Biology Biochemistry, 176: 108884. doi: 10.1016/j.soilbio.2022.108884 [32] Keller A B, Brzostek E R, Craig M E, et al, 2021. Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type[J]. Ecology Letters, 24(4): 626-635. doi: 10.1111/ELE.13651 [33] Kuzyakov Y, 2010. Priming effects: interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 42(9): 1363-1371. doi: 10.1016/j.soilbio.2010.04.003 [34] Lal R, 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623-1627. doi: 10.1126/science.1097396 [35] Li J, Shangguan Z, Deng L, 2020. Variations of belowground C and N cycling between arbuscular mycorrhizal and ectomycorrhizal forests across China[J]. Soil Research, 58(5): 441-451. doi: 10.1071/SR19377 [36] Liang C, Schimel J P, & Jastrow J D, 2017. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2(8): 17105. doi: 10.1038/nmicrobiol.2017.105 [37] Lin G M, McCormack M L, Ma C, et al, 2016. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests[J]. New Phytologist, 213(3): 1440-1451. doi: 10.1111/nph.14206 [38] Mori T, Lu X, Aoyagi R, et al, 2018. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests[J]. Functional Ecology, 32(5): 1145-1154. doi: 10.1111/1365-2435.13043 [39] Orwin K H, Kirschbaum M U F., St John M G, 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment[J]. Ecology Letters, 14(5): 493-502. doi: 10.1111/j.1461-0248.2011.01611.x [40] Phillips R P, Brzostek E, Midgley M G, 2013. The mycorrhizal associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests[J]. New Phytologist, 199: 41-51. doi: 10.1111/nph.12221 [41] Phillips R P, Fahey T J, 2005. Patterns of rhizosphere carbon flux in sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) saplings[J]. Global Change Biology, 11(6): 983-995. doi: 10.1111/j.1365-2486.2005.00959.x [42] Phillips R P, Fahey T J, 2006. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects[J]. Ecology, 87(5): 1302-1313. doi: 10.1890/0012-9658(2006)87[1302:TSAMAI]2.0.CO;2 [43] Rineau F, Shah F, Smits M M, et al, 2013. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus[J]. The ISME Journal, 7(10): 2010-2022. doi: 10.1038/ismej.2013.91 [44] Smith S E, Smith F A, 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 62(1): 227-250. doi: 10.1146/annurev-arplant-042110-103846 [45] Soudzilovskaia N A, Heijden M G, Cornelissen JH, et al, 2015. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhizal on soil carbon cycling[J]. New Phytologist, 208(1): 280-293. doi: 10.1111/nph.13447 [46] Sulman B N, Brostek E R, Medici C, et al, 2017. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association[J]. Ecology Letters, 20(8): 1043-1053. doi: 10.1111/ele.12802 [47] Talbot J M, Allison S D, Treseder K K, 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 22(6): 955-963. doi: 10.1111/J.1365-2435.2008.01402.X [48] Taylor M K, Lankau R A, Wurzburger N, 2016. Mycorrhizal associations of trees have different indirect effects on organic matter decomposition[J]. Journal of Ecology, 104(6): 1576-1584. doi: 10.1111/1365-2745.12629 [49] Thomas R Q, Canham C D, Weathers K C, et al, 2010. Increased tree carbon storage in response to nitrogen deposition in the US[J]. Nature Geoscience, 3(1): 13-17. doi: 10.1038/ngeo721 [50] Trumbore S E, 2009. Radiocarbon and soil carbon dynamic[J]. Annual Review of Earth Plantation Science, 37: 47-66. doi: 10.1146/annurev.earth.36.031207.124300 [51] van der Heijden M G A, Martin F M, Selosse M, et al, 2015. Mycorrhizal ecology and evolution: the past, the present, and the future[J]. New Phytologist, 205(4): 1406-1423. doi: 10.1111/nph.13288 [52] Vargas R, Baldocchi D D, Querejeta J I, et al, 2010. Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature[J]. New Phytologist, 185(1): 226-236. doi: 10.1111/j.1469-8137.2009.03040.x [53] Vesterdal L, Bo E, Christiansen J R, et al, 2012. Soil respiration and rates of soil carbon turnover differ among six common European tree species[J]. Forest Ecology & Management, 264: 185-196. doi: 10.1016/j.foreco.2011.10.009 [54] Vesterdal L, Clarke N, Sigurdsson B D, et al, 2013. Do tree species influence soil carbon stocks in temperate and boreal forests[J]. Forest Ecology and Management, 309: 4-18. doi: 10.1016/j.foreco.2013.01.017 [55] Wooliver R, Pellegrini A F A, Waring B, et al, 2019. Changing perspectives on terrestrial nitrogen cycling: the importance of weathering and evolved resource-use traits for understanding ecosystem responses to global change[J]. Functional Ecology, 33(10): 1818-1829. doi: 10.1111/1365-2435.13377 [56] Yao Q, Li Z, Song Y, et al, 2018. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil[J]. Nature Ecology & Evolution, 2(3): 499-509. doi: 10.1038/s41559-017-0463-5 [57] Yin H, Wheeler E, Phillips R P, 2014. Root-induced changes in nutrient cycling in forests depend on exudation rates[J]. Soil Biology & Biochemistry, 78: 1-9. doi: 10.1016/j.soilbio.2014.07.022 -