<p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"></p>
<output id="3zz5p"></output><video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<p id="3zz5p"></p>
<p id="3zz5p"></p>

<output id="3zz5p"></output>
<video id="3zz5p"></video>

<video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

<noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

<video id="3zz5p"><p id="3zz5p"></p></video>

<video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

<noframes id="3zz5p"><p id="3zz5p"></p>
<p id="3zz5p"></p>

<p id="3zz5p"></p>

<p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
<p id="3zz5p"><delect id="3zz5p"></delect></p>

<video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
<p id="3zz5p"></p>

<delect id="3zz5p"></delect>

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不同菌根樹種土壤有機碳儲量及調控機制的研究進展

賈御夫

賈御夫. 不同菌根樹種土壤有機碳儲量及調控機制的研究進展[J]. 陸地生態系統與保護學報. doi: 10.12356/j.2096-8884.2023-0053
引用本文: 賈御夫. 不同菌根樹種土壤有機碳儲量及調控機制的研究進展[J]. 陸地生態系統與保護學報. doi: 10.12356/j.2096-8884.2023-0053
Yufu Jia. A Review on Soil Organic Carbon Stocks and Regulation Mechanisms Between Different Mycorrhizal Trees[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2023-0053
Citation: Yufu Jia. A Review on Soil Organic Carbon Stocks and Regulation Mechanisms Between Different Mycorrhizal Trees[J]. Terrestrial Ecosystem and Conservation. doi: 10.12356/j.2096-8884.2023-0053

不同菌根樹種土壤有機碳儲量及調控機制的研究進展

doi: 10.12356/j.2096-8884.2023-0053
基金項目: 國家自然科學基金面上項目(42273076);國家自然科學基金青年科學基金項目(41807329)
詳細信息
    作者簡介:

    賈御夫:E-mail: yufu123jia@163.com

    通訊作者:

    E-mail: yufu123jia@163.com

  • 中圖分類號: X714

A Review on Soil Organic Carbon Stocks and Regulation Mechanisms Between Different Mycorrhizal Trees

  • 摘要: 森林土壤有機碳庫(SOC)是全球碳循環和陸地生態系統重要組成部分,對氣候變化有重要影響。幾乎所有的森林樹木根系都與叢枝菌根(AM)或外生菌根(ECM)真菌共生,但2種菌根樹種的土壤碳循環存在差異。本文綜述了目前研究中2種菌根樹種土壤SOC儲量存在差異的原因,總結了調控不同菌根樹種SOC分解的機制以及可能在區域尺度上的變異,展望了未來菌根樹種SOC研究方向和熱點,旨在為精準預測菌根真菌對森林土壤碳匯的影響提供參考。
  • 圖  1  調控AM和ECM菌根樹種SOC分解的機制圖

    Figure  1.  Illustration of mechanisms regulating SOC decomposition in AM and ECM mycorrhizal tree species

    表  1  兩種菌根樹種對土壤有機碳循環的影響對比

    Table  1.   Comparison of two mycorrhizal tree species on soil organic carbon cycle

    AM樹種
    AM tree species
    ECM樹種
    ECM tree species
    主要參考文獻
    References
    主要樹種
    Major tree species
    木荷、桂樹、樟樹等松、樺、杉等何新華等, 2012; 師偉等, 2007
    主要分布范圍
    Major distribution area
    熱帶、亞熱帶溫帶、寒帶Crowther et al., 2019
    胞外酶分泌
    Extracellular enzyme secretion ability
    不能分泌胞外酶能分泌胞外酶Frey, 2019; Phillips et al., 2013
    與腐生微生物的養分競爭
    Nutrient competition with saprotrophs
    競爭弱競爭強Wooliver et al., 2019; Averill & Hawkes, 2016;
    Taylor et al., 2016; Averill et al., 2014;
    凋落物質量
    Litter quality
    C/N比低C/N比高Keller et al., 2021; Craig et al., 2018; Lin et al., 2016
    凋落物分解
    Litter decomposition rate
    分解快分解慢Keller et al., 2021; Craig et al., 2018; Lin et al., 2016
    根系碳輸入
    Root C input
    比例小,量少比例大,量多Gill and Finzi, 2016; Yin et al., 2014;
    Phillips and Fahey, 2005
    SOC分解
    SOC decomposition rate
    尚存爭議尚存爭議Li et al., 2020; Lin et al., 2016; Averill et al., 2014
    碳含量
    C concentrations
    尚存爭議尚存爭議Li et al., 2020; Lin et al., 2016; Averill et al., 2014
      注:AM:Arbuscular Mycorrhizal;ECM:Ectomycorrhizal;C: Carbon;C/N:有機碳(C)與總氮(N)比值;SOC:Soil Organic Carbon。
    下載: 導出CSV

    <p id="3zz5p"><delect id="3zz5p"></delect></p><p id="3zz5p"><delect id="3zz5p"></delect></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"></p>
    <output id="3zz5p"></output><video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <output id="3zz5p"></output>
    <video id="3zz5p"></video>

    <video id="3zz5p"><output id="3zz5p"><font id="3zz5p"></font></output></video>

    <noframes id="3zz5p"><p id="3zz5p"></p><p id="3zz5p"></p>

    <video id="3zz5p"><p id="3zz5p"></p></video>

    <video id="3zz5p"></video><video id="3zz5p"><p id="3zz5p"></p></video>

    <noframes id="3zz5p"><p id="3zz5p"></p>
    <p id="3zz5p"></p>

    <p id="3zz5p"></p>

    <p id="3zz5p"><delect id="3zz5p"><listing id="3zz5p"></listing></delect></p>
    <p id="3zz5p"><delect id="3zz5p"></delect></p>

    <video id="3zz5p"><p id="3zz5p"><delect id="3zz5p"></delect></p></video>
    <p id="3zz5p"></p>

    <delect id="3zz5p"></delect>
    屌“啊……慢点…肏
  • [1] 方精云, 2021. 碳中和的生態學透視[J]. 植物生態學報, 45(11): 1173-1176. doi:  10.17521/cjpe.2021.0394
    [2] 馮繼廣, 朱彪, 2020. 氮磷添加對樹木生長和森林生產力影響的研究進展[J]. 植物生態學報, 44(06): 583-597. doi:  10.17521/cjpe.2019.0176
    [3] 何新華, 段英華, 陳應龍, 等, 2012. 中國菌根研究60年: 過去、現在和將來[J]. 中國科學(生命科學), 42(6): 431-454. doi:  10.1007/s11427-010-4096-z
    [4] 李銀, 陳國科, 林敦梅, 等, 2016. 浙江省森林生態系統碳儲量及其分布特征[J]. 植物生態學報, 40(4): 354-363. doi:  10.17521/cjpe.2015.0193
    [5] 馬克平, 2011. 森林與人類休戚相關, 需要我們更多呵護[J]. 生物多樣性, 19(3): 273-274. doi:  10.3724/SP.J.1003.2011.02088
    [6] 潘根興, 曹建華, 周運超, 2004. 土壤碳及其在地球表層系統碳循環中的意義[J]. 第四紀研究, 2000(4): 325-334. doi:  10.3321/j.issn:1001-7410.2000.04.003
    [7] 師偉, 王政權, 劉金梁, 等, 2007. 帽兒山天然次生林20個闊葉樹種細根形態[J]. 植物生態學報, 32(6): 1217-1226. doi:  10.3773/j.issn.1005-264x.2008.06.002
    [8] 王薪琪, 王傳寬, 張泰東, 2017. 森林土壤碳氮循環過程的新視角: 叢枝與外生菌根樹種的作用[J]. 植物生態學報, 41(10): 1113-1125. doi:  10.17521/cjpe.2017.0116
    [9] 尹華軍, 張子良, 劉慶, 2018. 森林根系分泌物生態學研究: 問題與展望[J]. 植物生態學報, 42(11): 1055-1070. doi:  10.17521/cjpe.2018.0156
    [10] Averill C, Turner B L, Finzi A C, 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature, 505: 543-545. doi:  10.1038/nature12901
    [11] Averill C, Hawkes C V, 2016. Ectomycorrhizal fungi slow soil carbon cycling[J]. Ecology Letters, 19(8): 937-947. doi:  10.1111/ele.12631
    [12] Boggs J L, McNulty S G, Gavazzi M J, et al, 2005. Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests[J]. Canadian Journal of Forest Research, 35(8): 1901-1913. doi:  10.1139/x05-128
    [13] Bonan G B, 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 320: 1444-1449. doi:  10.1126/science.1155121
    [14] Bond-Lamberty B, Thomson A, 2010. Temperature-associated increases in the global soil respiration record[J]. Nature, 464(7288): 579-582. doi:  10.1038/nature08930
    [15] Brzostek E R, Dragoni D, Brown Z A, et al, 2015. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest[J]. New Phytologist, 206(4): 1274-82. doi:  10.1111/nph.13303
    [16] Brzostek E R, Fisher J B, Phillips R P, 2014. Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation[J]. Journal of Geophysical Research - Biogeosciences, 119(8): 1684-1697. doi:  10.1002/2014JG002660
    [17] Clemmensen K E, Bahr A, Ovaskainen O, et al, 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 339(6127): 1615-1618. doi:  10.1126/science.1231923
    [18] Carrara J E, Walter C A, Freedman Z B, et al, 2021. Differences in microbial community response to nitrogen fertilization result in unique enzyme shifts between arbuscular and ectomycorrhizal-dominated soils[J]. Global Change Biology, 27(10): 1-12. doi:  10.1111/GCB.15523
    [19] Cleveland C C, Townsend A R, Taylor P, et al, 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis[J]. Ecology Letters, 14(9): 1313-1317. doi:  10.1111/j.1461-0248.2011.01658.x
    [20] Craig M E, Benjamin L, Turner B L, et al, 2018. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter[J]. Global Change Biology, 24(8): 3317-3330. doi:  10.1111/gcb.14132
    [21] Crowther T W, van den Hoogen J, Wan J, et al, 2019. The global soil community and its influence on biogeochemistry[J]. Science, 365(6455): eaav0550. doi:  10.1126/science.aav0550
    [22] Davidson E A, Janssens I A, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 440: 165-173. doi:  10.1038/nature04514
    [23] Ding Y D, Xie X Y, Ji J H, et al, 2021. Tree mycorrhizal effect on litter-leached DOC amounts and biodegradation is highly dependent on leaf habits in subtropical forests of southern China[J]. Journal of Soils and Sediments, 21: 3572-3579. doi:  10.1007/s11368-021-03032-8
    [24] Elser J J, Bracken M E, Cleland E E, et al, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 10(12): 1135-1142. doi:  10.1111/j.1461-0248.2007.01113.x
    [25] Fan Y, Lin F, Yang L, et al, 2018. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biology and Fertility Soils, 54(1): 149-161. doi:  10.1007/s00374-017-1251-8
    [26] Fernandez C W, Kennedy P G, 2016. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? [J]. New Phytologist, 209(4): 1382-1394. doi:  10.1111/nph.13648
    [27] Finzi A C, Abramoff R Z, Spiller K S, et al, 2015. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles[J]. Global Change Biology, 21(5): 2082-2094. doi:  10.1111/gcb.12816
    [28] Frey S D, 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics[J]. Annual Review of Ecology, Evolution, and Systematics, 50(1): 237–259. DOI: 10.1146/annurev-ecolsys-110617-062331.
    [29] Gill A L, Finzi A C, 2016. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale[J]. Ecology Letters, 19(12): 1419-1428. doi:  10.1111/ele.12690
    [30] Jia J, Feng X J, He J S, et al, 2017. Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland[J]. Soil Biology Biochemistry, 104: 141-151. doi:  10.1016/j.soilbio.2016.10.018
    [31] Jia Y F, Liu Z G, Zhou L, et al, 2023. Soil organic carbon sourcing variance in the rhizosphere vs. non-rhizosphere of two mycorrhizal tree species[J]. Soil Biology Biochemistry, 176: 108884. doi:  10.1016/j.soilbio.2022.108884
    [32] Keller A B, Brzostek E R, Craig M E, et al, 2021. Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type[J]. Ecology Letters, 24(4): 626-635. doi:  10.1111/ELE.13651
    [33] Kuzyakov Y, 2010. Priming effects: interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 42(9): 1363-1371. doi:  10.1016/j.soilbio.2010.04.003
    [34] Lal R, 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623-1627. doi:  10.1126/science.1097396
    [35] Li J, Shangguan Z, Deng L, 2020. Variations of belowground C and N cycling between arbuscular mycorrhizal and ectomycorrhizal forests across China[J]. Soil Research, 58(5): 441-451. doi:  10.1071/SR19377
    [36] Liang C, Schimel J P, & Jastrow J D, 2017. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2(8): 17105. doi:  10.1038/nmicrobiol.2017.105
    [37] Lin G M, McCormack M L, Ma C, et al, 2016. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests[J]. New Phytologist, 213(3): 1440-1451. doi:  10.1111/nph.14206
    [38] Mori T, Lu X, Aoyagi R, et al, 2018. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests[J]. Functional Ecology, 32(5): 1145-1154. doi:  10.1111/1365-2435.13043
    [39] Orwin K H, Kirschbaum M U F., St John M G, 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment[J]. Ecology Letters, 14(5): 493-502. doi:  10.1111/j.1461-0248.2011.01611.x
    [40] Phillips R P, Brzostek E, Midgley M G, 2013. The mycorrhizal associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests[J]. New Phytologist, 199: 41-51. doi:  10.1111/nph.12221
    [41] Phillips R P, Fahey T J, 2005. Patterns of rhizosphere carbon flux in sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) saplings[J]. Global Change Biology, 11(6): 983-995. doi:  10.1111/j.1365-2486.2005.00959.x
    [42] Phillips R P, Fahey T J, 2006. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects[J]. Ecology, 87(5): 1302-1313. doi:  10.1890/0012-9658(2006)87[1302:TSAMAI]2.0.CO;2
    [43] Rineau F, Shah F, Smits M M, et al, 2013. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus[J]. The ISME Journal, 7(10): 2010-2022. doi:  10.1038/ismej.2013.91
    [44] Smith S E, Smith F A, 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 62(1): 227-250. doi:  10.1146/annurev-arplant-042110-103846
    [45] Soudzilovskaia N A, Heijden M G, Cornelissen JH, et al, 2015. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhizal on soil carbon cycling[J]. New Phytologist, 208(1): 280-293. doi:  10.1111/nph.13447
    [46] Sulman B N, Brostek E R, Medici C, et al, 2017. Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association[J]. Ecology Letters, 20(8): 1043-1053. doi:  10.1111/ele.12802
    [47] Talbot J M, Allison S D, Treseder K K, 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 22(6): 955-963. doi:  10.1111/J.1365-2435.2008.01402.X
    [48] Taylor M K, Lankau R A, Wurzburger N, 2016. Mycorrhizal associations of trees have different indirect effects on organic matter decomposition[J]. Journal of Ecology, 104(6): 1576-1584. doi:  10.1111/1365-2745.12629
    [49] Thomas R Q, Canham C D, Weathers K C, et al, 2010. Increased tree carbon storage in response to nitrogen deposition in the US[J]. Nature Geoscience, 3(1): 13-17. doi:  10.1038/ngeo721
    [50] Trumbore S E, 2009. Radiocarbon and soil carbon dynamic[J]. Annual Review of Earth Plantation Science, 37: 47-66. doi:  10.1146/annurev.earth.36.031207.124300
    [51] van der Heijden M G A, Martin F M, Selosse M, et al, 2015. Mycorrhizal ecology and evolution: the past, the present, and the future[J]. New Phytologist, 205(4): 1406-1423. doi:  10.1111/nph.13288
    [52] Vargas R, Baldocchi D D, Querejeta J I, et al, 2010. Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature[J]. New Phytologist, 185(1): 226-236. doi:  10.1111/j.1469-8137.2009.03040.x
    [53] Vesterdal L, Bo E, Christiansen J R, et al, 2012. Soil respiration and rates of soil carbon turnover differ among six common European tree species[J]. Forest Ecology & Management, 264: 185-196. doi:  10.1016/j.foreco.2011.10.009
    [54] Vesterdal L, Clarke N, Sigurdsson B D, et al, 2013. Do tree species influence soil carbon stocks in temperate and boreal forests[J]. Forest Ecology and Management, 309: 4-18. doi:  10.1016/j.foreco.2013.01.017
    [55] Wooliver R, Pellegrini A F A, Waring B, et al, 2019. Changing perspectives on terrestrial nitrogen cycling: the importance of weathering and evolved resource-use traits for understanding ecosystem responses to global change[J]. Functional Ecology, 33(10): 1818-1829. doi:  10.1111/1365-2435.13377
    [56] Yao Q, Li Z, Song Y, et al, 2018. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil[J]. Nature Ecology & Evolution, 2(3): 499-509. doi:  10.1038/s41559-017-0463-5
    [57] Yin H, Wheeler E, Phillips R P, 2014. Root-induced changes in nutrient cycling in forests depend on exudation rates[J]. Soil Biology & Biochemistry, 78: 1-9. doi:  10.1016/j.soilbio.2014.07.022
  • 加載中
圖(1) / 表(1)
計量
  • 文章訪問數:  15
  • HTML全文瀏覽量:  6
  • PDF下載量:  2
  • 被引次數: 0
出版歷程
  • 收稿日期:  2023-08-26
  • 錄用日期:  2023-09-12

目錄

    /

    返回文章
    返回